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Learnability of Heterogeneous Misspecification Equilibrium

Abstract

This paper investigates the learnability of the equilibrium under adaptive learning with het-
erogeneous and misspecified models. Agents have imperfect and mutually different information
sets of economic variables, so they form heterogeneous expectations under learning rules that
are differently underparameterized. Under heterogeneous learning, the economy converges to a
type of restricted perceptions equilibrium, which here is called a Heterogeneous Misspecification
Equilibrium (HME). The paper finds that the HME is more learnable than the equilibrium under
homogeneous and correctly specified learning rules that corresponds to a rational expectations
equilibrium (REE); in other words, the stability conditions of the HME are less stringent than
those of the REE. In a basic NK model with a Taylor-type monetary policy rule, for example,
the central bank is allowed to choose a wider range of values of policy parameters to ensure the
learnability of the HME than that permitted to ensure the learnability of the REE, that is, the
Taylor principle. In addition, if the correlation between demand and supply shocks is low, the
stability conditions of the HME become further less stringent so that the central bank might
not have to address the learnability of the equilibrium.

JEL classification: C62; D83; E52

Keywords: Adaptive learning; Heterogeneous expectations; Taylor principle
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1 Introduction

The rational expectation is based on the extreme assumption that we know everything about

the structure of an economy. However, we rarely have enough information about an economy

to form rational expectations, and hence we estimate econometric models to forecast the future

of the economy. In this situation, a rational expectations equilibrium (REE) is asymptotically

realizable only if the equilibrium is adaptively learnable in the sense that our forecasts con-

verge to rational expectations through recursive updating of our beliefs on the structure of the

economy. Hence, the learnability of the equilibrium, or, in other words, the stability of the

equilibrium under adaptive learning, has been considered one of the necessary conditions that

the equilibrium must satisfy (see Evans and Honkapohja 2001; Bullard and Mitra 2002).

In practice, it is also improbable that any economic variables are observable so that agents

can specify a correct form of econometric model that has the same form as the structure of

the economy. Previous literature on this kind of learning often assumes that agents can ob-

serve any economic variables in forming their forecasts by adaptive learning. Actually, some

exogenous variables such as demand and supply shocks, for example, are measurable only if

the structure of the economy is correctly identified. Thus, agents might be constrained to form

underparameterized econometric models by using only observable economic variables.

Furthermore, it is possible that agents use different econometric models and form hetero-

geneous expectations because the observability of economic variables can be different across

agents. To be sure, any economic variable would necessarily be observed by someone; as a re-

sult, the economy as a whole would respond to all economic variables. However, some variables

(e.g., preference shocks in households’ utility, idiosyncratic shocks on firms) might be observable
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only for specific agents as private information. Each agent might be restricted to use a form

of econometric model that is not only underparameterized but also different and that includes

variables that are observable only for that agent.

This paper investigates equilibrium under heterogeneous and misspecified learning using a

multivariate linear expectations model. Each type of agent is assumed to use a single form of

heterogeneously underparameterized learning rule, using an imperfect and different information

set of economic variables. We clarify whether the heterogeneous and misspecified expectations

affect the characteristics and learnability of the equilibrium by comparing them with those of

the equilibrium realized under learning with homogeneous and correctly specified expectations.

Next, using a basic New Keynesian model with a Taylor-type monetary policy rule as an exam-

ple, we examine the effect of heterogeneous learning on the conditions on policy parameters of

the central bank aimed at keeping the equilibrium learnable.

The paper provides three main results. First, we confirm that the equilibrium under the

heterogeneous and misspecified learning rules deviates from a REE, which is learnable un-

der a homogeneous and correctly specified learning rule, and converges to a type of restricted

perceptions equilibrium (RPE), which we term here the Heterogeneous Misspecification Equi-

librium (HME)1. The deviation of the HME from the REE is generated by two factors: first,

the heterogeneity in learning that keeps the expectations of individual agents inconsistent with

macroeconomic expectations; and second, the misspecification in learning that makes parameter

estimates biased through correlation between the variables that are included in a learning rule

and the variables that are not included. Next, we find that the HME is more learnable than

1The HME is defined by differentiating it from the RPE, because the original RPE does not incorporate
heterogeneity in learning. See Evans and Honkapohja (2001) and Branch (2004) for the analysis of the RPE.
Adam (2005) and Branch and McGough (2009) consider the RPE in basic NK models.
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the REE; in other words, the stability conditions of the HME are less stringent than those of

the REE. Finally, as a result, in the basic NK model, the central bank is allowed to choose

a wider range of values of policy parameters to ensure the learnability of the HME than that

permitted to ensure the learnability of the REE, that is, the Taylor principle. In addition, if the

correlation of demand and supply shocks is low, the stability conditions of the HME become

further less stringent so that the central bank might not have to address the learnability of the

equilibrium.

The related literature examines equilibria under heterogeneous and misspecified learning

rules2. Several studies investigate the heterogeneous expectations equilibrium (HEE) in which

two different types of agents are constrained to have different information sets, so that agents of

one type use an underparameterized econometric model while the others use a correctly speci-

fied model. Branch and McGough (2004, 2009) indicate that specifications that are determinate

under rational expectations may possess multiple equilibria in the case of heterogeneity of ex-

pectations. Guse (2005) shows that the learnability of the HEE is affected by the proportion

of agents that use each different learning model. Berardi (2007) finds the conditions under

which the HEE is learnable while the REE is not under a correctly specified learning rule.

Berardi (2009b) argues that heterogeneity plays an important role in the central bank’s policy

2See Giannitsarou (2003) and Honkapohja and Mitra (2006) to find the stream of research on heterogeneous
learning. Heterogeneous learning has also been discussed from two other viewpoints. First, Evans and Honkapo-
hja (1996, 2001), Giannitsarou (2003), and Honkapohja and Mitra (2006) investigate stability conditions in a
situation in which agents have different initial beliefs about the parameters in their homogeneous econometric
models. They find that the heterogeneity in adaptive learning gradually disappears, and the equilibrium is as
learnable as to converge to a REE. That is, this heterogeneity has no persistent effect on the stability of equi-
librium. Second, Evans et al. (2001) and Honkapohja and Mitra (2005) examine learnability in a situation in
which agents have different learning algorithms (e.g., heterogeneity in updating functions or gain parameters).
Their heterogeneity delays the updating of estimated parameters in their models, but heterogeneous updating
rules become asymptotically homogeneous so that the equilibrium converges to the REE. These studies all in-
vestigate heterogeneous learning, but their findings mostly coincide in that the equilibrium under those types of
heterogeneous learning converges to the REE.
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implementation using a basic New Keynesian model.

Other relevant literature considers the misspecification equilibrium (ME), in which agents

choose between a list of different underparametrized econometric models and base their selec-

tions on relative forecast performance3. Branch and Evans (2006) imply that the learnability

of the ME depends on the method for estimating the forecasting performance of the models.

Branch and Evans (2007) show that multiple MEs may be learnable under least squares learn-

ing in a Lucas-type monetary model. On the other hand, Berardi (2009a) finds that sunspot

equilibria that can emerge in the HEE specification are not learnable under the heterogeneity

of agents choosing the best-performing models.

This paper contributes to related research in three main aspects. First, the paper introduces

an alternative specification of the heterogeneous learning process, the HME specification, in

which each type of agents are constrained to use a single form of different and underparame-

terized learning rule. This specification will make it possible to investigate adaptive learning in

economies with private information or when different agents are concerned with different local

variables4. Second, this paper provides analytical results of the characteristics and learnability of

the HME that emerge in a multivariate linear expectations model. Thus, our results are directly

applicable to the analysis of the learnability of a variety of linear macroeconomic models under

3Brock and Hommes (1997) is the first study to investigate equilibria under the heterogeneity of agents
choosing the best-performing models. Branch and Evans (2006) extend the model to the ME model where
agents do not choose between a costly accurate forecast and a costless unsophisticated forecast, but choose
between equally underparametrized costless models.

4This issue is suggested as a future work by Honkapohja and Mitra (2006). In contrast, the related speci-
fications mentioned above may be interpreted to incorporate the assumption that agents exist that have a full
information set of economic variables. In the HEE specification, some of the agents are assumed to have enough
information about economic variables to form a correctly specified learning model. In the ME specification,
agents are also assumed to have enough information to allow them to arbitrarily choose an optimal learning
rule. Thus, our specification can be differentiated from related ones in that each type of agent is assumed to
have private information.
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heterogeneously misspecified learning rules. Third, using a basic NK model, the paper shows

the effect of the correlation of demand and supply shocks on the learnability of an equilibrium

under heterogeneous learning, a topic that has been rarely discussed in the literature.

The paper is structured as follows. The next section introduces our model. Section 3

investigates the evolution of the economy under a homogeneous and correctly specified learning

rule. Section 4 introduces the HME specification and examines changes in the evolution of the

economy. Section 5 calibrates the effect of the heterogeneous learning using a basic NK model.

Finally, we present our conclusions.

2 Model

In this section, we introduce a multivariate linear expectations model to obtain an equilibrium

for agents to form rational (or irrational) expectations:

{
yt = Bye

t+1 + Cwt,
wt = Φnwt−1 + vt.

(1)

yt is a m × 1 vector of endogenous variables. wt is a n × 1 vector of autoregressive exogenous

variables. vt is a n × 1 vector of shocks that may correlate with one another and drive the

stochastic processes of the exogenous variables. e is the operator of rational (or irrational)

expectation. B is a m × m coefficient matrix of endogenous variables, and C is a m × n

coefficient matrix of exogenous variables. Φn is a n × n matrix of autoregressive coefficients of

exogenous variables. We add several assumptions to simplify later analysis as follows.

Assumption 1
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1. Φn is a diagonal matrix, whose diagonal elements are in (0, 1) and observable.

2. det (Im − B) ̸= 0.

Assumption 1.1 is a standard assumption in the analysis of adaptive learning. Assumption 1.2

avoids that the equilibrium yt could be indeterminate to exogenous variables wt.

If agents form rational expectations conditional on all available information, there can be

a uniquely stable REE as a fundamental equilibrium. The easiest methodology by which to

obtain the reduced form solution is to apply the method of undetermined coefficients. We guess

a minimal state variable (MSV) solution to be

yt = a + cwt, (2)

substitute it into the system (1), and obtain the solutions of (a, c).

{
ā = 0,
c̄ = Bc̄Φn + C.

(3)

If the REE (3) is learnable, agents’ beliefs of the system (1) that are formed through adaptive

learning are able to converge to the REE.

3 Homogeneous and Correctly Specified Learning Rule

Next, we consider the economy in which agents form homogeneous beliefs about the system (1)

through adaptive learning. We assume that all agents do not have enough information about

the system (1) to form rational expectations and that agents have only the data of yt and wt up

to time t, {ys, ws}t
s=1. Using the available data, agents will specify an adaptive learning rule,
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that is, a perceived law of motion (PLM), by which to form their beliefs and expectations of

the future economy.

3.1 Dynamics

If all agents have a information set of economic variables {ys, ws}t
s=1, they can specify a correct

form of PLM that is in the same form as the MSV solution (2),

yt = a + cwt + εt, (4)

where a is a m × 1 vector of constant terms, c is a m × n coefficient matrix for wt, and εt is a

m× 1 vector of error terms that are believed to be white noises. We define a parameter matrix

by φ′ = (a, c)5.

Under the PLM (4), agents’ expectations ye
t+1 are established by

ye
t+1 = a + cwe

t+1

= a + cΦnwt. (5)

Substituting (5) into the system (1), an actual law of motion (ALM) of the economy is deter-

mined by

yt = Ba + (BcΦn + C) wt. (6)

In real-time learning, agents recursively update the estimates φ′ = (a, c) using newly available

data every time. Evans and Honkapohja (2001, chapter 2) have introduced the E-stability
5We focus on the PLM of the MSV form that does not depend on sunspot terms. To the system (1), there

could be nonexplosive sunspot solutions, which might be learnable under adaptive learning if agents specified a
PLM including sunspot terms. Evans and McGough (2005) indicate that there exist sunspot solutions that are
learnable under the PLMs with sunspot terms. However, for that purpose, they impose several strong conditions
on the characteristics of the sunspot terms. Duffy and Xiao (2007) show that in a general real business cycle
model, sunspot solutions are always unstable under adaptive learning. Berardi (2007) focuses on the PLMs
without sunspot terms in a HEE model. Hence, we consider that sunspot solutions would be unstable under
adaptive learning.
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principle that if agents conduct recursive least-squares learning, the local convergence of the

estimates φ is governed by the following ordinary differential equation (ODE)

d

dτ
(a, c) = T (a, c) − (a, c) , (7)

where T (a, c) ≡ (Ta (a) , Tc (c)) = (Ba,BcΦn + C), which is equivalent to a mapping from the

PLM (4) to the ALM (6). τ denotes notional time. As a result, the fixed point of the ODE (7),

{
ā = 0,
c̄ = Bc̄Φn + C,

(8)

can be the equilibrium under recursive least-squares learning.

If agents’ beliefs φ′ = (a, c) converge to the fixed point (8), φ̄ = (ā, c̄) is a unique and stable

equilibrium under the correctly specified learning rule (4). Furthermore, the equilibrium (8) is

equivalent to the REE (3); the REE can be considered as a convergence limit of the equilibrium

realized under the homogeneous and correctly specified learning rule.

3.2 Stability Conditions

For agents’ beliefs to converge to the fixed point (8), the ODE (7) has to be locally stable in

the neighborhood of the fixed point. As Evans and Honkapohja (2001, Proposition 5.6) have

confirmed, the ODE (7) is locally stable if and only if its Jacobians,

D (Ta (a) − a) = B − Im, (9)

D (Tc (c) − c) = Φ′
n ⊗ B − Imn, (10)

have all negative real parts of eigenvalues, in other words, the largest values of the real parts of

the eigenvalues of B and Φ′
n ⊗ B are less than unity. Hereafter, to simplify expositions, λ [X]
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denotes the largest value of the real parts of the eigenvalues of a matrix X. Then, the above

conditions are expressed by λ [B] < 1 and λ [Φ′
n ⊗ B] < 1.

To be precise, the stability of the ODE (7) solely depends upon whether λ [B] < 1. Notice

that the eigenvalues of Φ′
n ⊗ B in (10) consist of all combinations of the products of the eigen-

values of Φn and those of B. Furthermore, by Assumption 1.1, the eigenvalues of Φn are real

and in (0, 1). Then, if matrix B satisfies λ [B] < 1, B automatically satisfies λ [Φ′
n ⊗ B] < 1.

Thus, the stability condition is solely expressed by λ [B] < 1.

What if agents recognize that there are no constant terms in the system (1) from the begin-

ning? Then, they specify a PLM that excludes constant terms, instead of (5).

yt = cwt (11)

In this case, the ODE (7) is locally stable if and only if the Jacobian (10) has all negative real

parts of eigenvalues, that is, λ [Φ′
n ⊗ B] < 1.

Therefore, the stability conditions of the REE are summarized as follows.

Proposition 1 In the system (1), if agents learn adaptively by specifying homogeneous and

correctly specified models, a possible stable equilibrium is unique and equivalent to the REE (8).

The equilibrium is locally stable if and only if:

1. under the PLM with constant terms (4), λ [B] < 1;

2. under the PLM without constant terms (11), λ [Φ′
n ⊗ B] < 1.
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Further, as is shown above, the condition λ [Φ′
n ⊗ B] < 1 is less restrictive for B than

λ [B] < 1 is. Then, the real parts of the eigenvalues of matrix B have a wider range of values

under the PLM without constant terms (11).

Corollary 1 If agents recognize that no constant terms exist in the system (1) from the be-

ginning and specify a PLM without constant terms (11), stability conditions are less restrictive

than otherwise.

The reason is intuitively understandable. The PLM (11) is more correctly specified than the

PLM (4) because the system (1) has no constant terms. Then, if agents originally recognize

the non-existence of constant terms in the system and use (11), the expectations of agents

become more accurate. As a result, restrictions on the matrix B to ensure the learnability of

the equilibrium are relaxed6.

4 Heterogeneous and Misspecified Learning Rules

In the following, we consider that agents have heterogeneous beliefs on the structure of the

economy by specifying different PLMs. The economy depends upon a number of economic vari-

ables. However, agents are rarely able to observe all of those variables, in particular, exogenous

variables such as structural shocks. Then, agents might be constrained to respond to specific

exogenous variables that are observable only for them.

6Bullard and Mitra (2002, Appendix B) also find that in a basic NK model with a Taylor-type nominal
interest rate rule of the central bank, conditions on coefficients in the rule to ensure the learnability of the
equilibrium become less restrictive if agents specify a PLM without constant terms.
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Suppose that there are n types of agents. The population of each type is 1
n
. Agents of type

i ∈ {1, ..., n} are able to observe a single exogenous variable wi,t in wt = {wi,t|i = 1, ..., n}. Then,

even though agents form expectations under adaptive learning, they cannot specify a correct

form of PLM that responds to all exogenous variables. In this setting, the number n represents

not only the quantity of exogenous variables, but also the heterogeneity in learning. If n = 1,

this heterogeneity disappears, and the system is reduced to the previous one via homogeneous

learning.

We decompose the notations of vectors and matrices in (1) to notations in line with hetero-

geneous learning.

wt = (w1,t, ..., wn,t)
′ , vt = (v1,t, ..., vn,t)

′ , C = (C1, ..., Cn) , Φn =

 ϕ1 · · · 0
...

. . .
...

0 · · · ϕn

 .

Note that wi,t, vi,t, and ϕi ∈ (0, 1) are all scalars. Ci is a m × 1 coefficient vector of wi,t. We

define the standard deviation of wi as σii (̸= 0) and the correlation matrix of wt as Γn ≡ (
ρij

)
n×n

（ρii = 1, ρij = ρji,
∣∣ρij

∣∣ ≤ 1）. In order to simplify our later analysis, we make the assumption

of Γn
7.

Assumption 2 Γn is a nonnegative matrix, in which ρij ≥ 0 for any i, j ∈ {1, ..., n}.

This assumption has no effect on our analysis.

Further, we introduce the notation of a n × n idempotent matrix Ξn ≡ 1
n

(xij) (xij = 1 for

any i, j). Note that eigenvalues of Ξn are 0 and 1.

7Even if a correlation between wi and wj , ρij , is negative, this becomes positive by changing the sign of wi to
−wi and redefining the correlation between −wi and wj as ρij . By iterating this transformation for all possible
negative correlations, we can make all correlations nonnegative.

12



4.1 Dynamics

As agents i observe a different exogenous variable wi,t, the agents form a heterogeneous belief

by specifying a different and underparameterized PLM.

yt = ai + ciwi,t + εi,t. (12)

ai and ci are m × 1 vectors of constant terms and coefficients. εi,t is a m × 1 vector of error

terms that are believed to be white noises8. Then, the expectations of agents i are made as

ye
i,t+1 = ai + ciϕiwi,t. (13)

Then, under the heterogeneous PLMs (12), the average PLM of the economy is given as

follows9.

yt =
1

n

n∑
i=1

(ai + ciwi,t + εi,t)

=
1

n

(Im, ..., Im)

 a1
...

an

 + (c1, ..., cn)

 w1,t
...

wn,t

 + (Im, ..., Im)

 ε1,t
...

εn,t




=
1

n
(Im, ..., Im) a +

1

n
cwt +

1

n
(Im, ..., Im) εt. (14)

where a ≡ (a′
1, ..., a

′
n)′, c ≡ (c1, ..., cn), and εt ≡

(
ε′1,t, ..., ε

′
n,t

)′10. Under heterogeneous expecta-

8As a result, the equilibrium derived in this section is not a consistent expectations equilibrium, which is
defined by Hommes and Sorger (1998), that requires that agents correctly perceive all autocorrelations of εt.
Evans and Honkapohja (2001, chapter 13.1.3) argue that if we assume wt to be iid, the equilibrium under
misspecified learning becomes the consistent expectations equilibrium.

9Following Branch and Evans (2006), who assume agents to specify heterogeneous and misspecified PLMs,
we define the average PLM of the overall economy as the weighted average of PLMs of heterogeneous agents.
We assume necessary conditions for the linear combination of heterogeneous expectations to hold in our model,
given by Branch and McGough (2009). On the other hand, Berardi (2007) introduces structural heterogeneity,
under which heterogeneous PLMs contribute to the average PLM of the economy to different degrees.

10Note that the definition of a is changed from the definition under homogeneous learning, (4). However,
to avoid complexity in our analysis, we use the same notation as before for the current constant term matrix
(a′

1, ..., a
′
n)′.
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tions (13), the average expectation ye
t+1 is obtained by

ye
t+1 =

1

n

n∑
i=1

ye
i,t+1

=
1

n
{(Im, ..., Im) a + cΦnwt} . (15)

Thus, under heterogeneous learning, individual expectations ye
i,t+1 continue to be different from

the average expectation ye
t , except the economy is at the steady state where ye

t+1 = ye
i,t+1 = 0

for any i.

Substituting (15) into the system (1), an ALM of the economy is obtained as

yt = Bye
t+1 + Cwt

= B

(
1

n
{(Im, ..., Im) a + cΦnwt}

)
+ Cwt

=
1

n
B (Im, ..., Im) a +

(
1

n
BcΦn + C

)
wt. (16)

The ALM (16) indicates that the economy as a whole responds to any exogenous variable that

is observable only for a certain type of agents.

Next, we have to calculate the real-time learning processes of each type of agents. As

mentioned in Section 3.1, in real-time learning, type i agents recursively update the estimates

φ′
i = (ai, ci) using newly available data every time. However, under heterogeneous learning,

the E-stability principle is not satisfied; that is, even if agents conduct recursive least-squares

learning, the local convergence of φi is not governed by an ODE that could be made by mapping

from the PLM (14) to the ALM (16).

If type i agents update estimates φ′
i,t = (ai,t, ci,t) in time t by least-squares projection of yt

on z′i,t ≡ (1, wi,t), φ′
i,t must satisfy an orthogonality condition,

Ezi,t

(
yt − φ′

i,tzi,t

)
= 0. (17)
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Individual agents do not estimate fully accurately, but their estimations are as accurate as

possible given the available information up to time t, {ys, ws}t
s=1. The operator E denotes the

expectation of variables, for φi,t fixed, taken over the invariant distributions of the exogenous

variables wt.

After obtaining the estimates to satisfy (17) for all i, we can define the dynamics of the

estimated parameters {φi}n
i=1, the derivation of which is described in Appendix A, as follows.

Definition 1 The economy is defined as the stationary stochastic process of yt following the

system (1). Under heterogeneous and misspecified learning, the PLM of type i agents is formed

by (12). Then, the dynamics of the estimates of all types, {φi}n
i=1, is subject to the following

ordinary differential equations. {
da
dτ

= Ta (a) − a,
dc
dτ

= Tc (c) − c,
(18)

where

Ta (a) ≡ (Ξn ⊗ B) a,

Tc (c) ≡
(

1

n
BcΦn + C

)
Ψn,

Ψn ≡ diag (σii) Γndiag (σii)
−1 .

Under Assumption 1.2, the equilibrium under heterogeneous learning is a fixed point of the

ODE (18).

ā = 0, (19)

c̄ =

(
1

n
Bc̄Φn + C

)
Ψn. (20)
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In this paper, the equilibrium (19, 20) is termed the Heterogeneous Misspecification Equilibrium

(HME).

Compared with the REE (8), the HME deviates in terms of the fixed point of c̄. We can

find two reasons for the divergence. First, the deviation of c̄ is generated by the heterogeneity

in expectations, which appears as 1
n

in (20). Agents never recognize that individual types of

agents follow heterogeneous learning that keeps the expectations of each type inconsistent with

the average expectation of the economy11. Second, the misspecification in forming PLMs also

makes the HME deviate from the REE. This effect is reflected by Ψn, the (i, j) element of which

is σ−1
ii ρijσjj, the least-squares estimate of the coefficient in the equation where wj is regressed

upon wi. The estimates ct have omitted variable bias so that the values of those estimates

automatically deviate from the values that are estimated under the correctly specified PLM

(4)12. If ρij = 0 for any i ̸= j, then Ψn = In, and the bias would disappear. In reality, ρij ̸= 0

for some i and j so that, under the misspecified PLMs, explanatory variables and error terms

correlate so as to make the estimates biased. Consequently, the dynamics of the HME deviates

from the dynamics of the REE13.

4.2 Stability Conditions

Next, we consider conditions for the HME to be stable under heterogeneous learning.

11Under homogeneous learning (n = 1), individual agents form the same expectations. In this case, individual
expectations are automatically consistent with the average expectation, even if each agent is unable to apprehend
the formation of expectations by other agents.

12Omitted variable bias and its effect on the dynamics of the economy are discussed by Branch and Evans
(2007).

13Note that even if exogenous variables were not correlated with one another （Ψn = In）, the dynamics of
the HME continues to be divergent from that of the REE as long as the heterogeneity in learning exists (n ̸= 1).
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The ODE (18) is locally stable if and only if its Jacobians,

D (Ta (a) − a) = Ξn ⊗ B − Imn, (21)

D (Tc (c) − c) =

(
Φn

(
1

n
Ψn

))′
⊗ B − Imn, (22)

have all negative real parts of eigenvalues at the fixed point (19, 20), in other words, λ [Ξn ⊗ B] <

1 and λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< 114.

Notice that the matrices Ξn and
(
Φn

(
1
n
Ψn

))′
have the following characteristics, the proof

of which is in Appendix B.

Lemma 1

1. Eigenvalues of
(
Φn

(
1
n
Ψn

))′
are all real and in [0, 1).

2. If λ [B] > 0, λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< λ [Φ′
n ⊗ B] < λ [Ξn ⊗ B].

3. λ [Ξn ⊗ B] = λ [B].

Hence, we find that the stability condition of the ODE (18) is solely λ [B] < 1. First, if

λ [B] ≤ 0, the ODE is necessarily stable because λ [Ξn ⊗ B] ≤ 0 and λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]
≤ 0

by Lemma 1.1. Next, suppose λ [B] > 0. λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< λ [Ξn ⊗ B] in Lemma 1.2

means that the stability of the ODE (18) is solely subject to whether λ [Ξn ⊗ B] < 1. As

λ [Ξn ⊗ B] = λ [B], the stability condition is λ [B] < 1.

14Note that if n = 1, then Ξ1 = 1 and 1
1Ψ1 = 1, and hence, the Jacobians are reduced to those under

homogeneous learning, (9, 10).
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If agents recognize that no constant terms exist in the system (1) from the beginning, each

type of agents will specify a PLM that excludes constant terms, instead of (12).

yt = ciwi,t + εi,t. (23)

In this situation, the stability of the ODE (18) is subject to whether (22) has all negative real

parts of eigenvalues. Then, the stability condition is λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< 1.

Therefore, stability conditions of the HME are summarized as follows.

Proposition 2 In the system (1), if agents learn adaptively by specifying heterogeneous and

misspecified models, a possible stable equilibrium is unique at the fixed point (19, 20) and deviates

from the REE (8). If the equilibrium is called a Heterogeneous Misspecification Equilibrium

(HME), the HME is locally stable if and only if:

1. under the PLM with constant terms (12), λ [B] < 1;

2. under the PLM without constant terms (23), λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< 1.

As λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< λ [B] if λ [B] > 0, Proposition 2 suggests that Corollary 1 con-

tinues to hold for heterogeneous learning.

Corollary 2 If agents recognize that no constant terms exist in the system (1) from the be-

ginning and specify heterogeneous and misspecified PLMs without constant terms (23), stability

conditions of the HME are less restrictive than otherwise.
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Compared with Proposition 1, Propostion 2 indicates that the effect of heterogeneity in

learning depends upon whether agents include constant terms in their PLMs. If agents spec-

ify the PLM including constant terms, the stability condition under heterogeneous learning

is equivalent to the condition under homogeneous learning. On the other hand, if agents

specify the PLM without constant terms, the stability conditions under heterogeneous learn-

ing are less restrictive than the conditions under homogeneous learning. This is because

λ
[(

Φn

(
1
n
Ψn

))′ ⊗ B
]

< λ [Φ′
n ⊗ B] in Lemma 1.2, meaning that the real parts of the eigen-

values of coefficient matrix B are allowed to have a wider range of values under heterogeneous

learning than those permitted under homogeneous learning.

However, if we consider the real economy where there must exist some agents who specify

PLMs without constant terms, the stability conditions under heterogeneous learning will almost

surely be less restrictive than the conditions under homogeneous learning. For example, if at

least one type of agents specify a PLM excluding constant terms, then Ξn in the Jacobian (21)

will be replaced with a matrix, e.g., Θn, which has some elements equal to zero and the other

elements equal to the counterparts of Ξn. Then, the stability condition is also replaced with

λ [Θn ⊗ B] < 1. As λ [Θn ⊗ B] < λ [Ξn ⊗ B] = λ [B], this stability condition is less restrictive

than the condition under homogeneous learning. Thus, we can conclude:

Proposition 3 In the system (1), if agents learn adaptively by specifying heterogeneous and

misspecified models, the stability conditions of the HME (19, 20) will almost surely be less

restrictive than the conditions of the REE (8) under the homogeneous and correctly specified

learning rule.
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Therefore, if agents adopt the heterogeneous and misspecifed learning rules, the equilibrium

will be more stable than the equilibrium under homogeneous learning. This suggests that the

government may be able to choose between a wider range of policy instruments in the case of

heterogeneous learning.

4.3 Discussion

The reason for the stabilization of the equilibrium under heterogeneous learning is because the

aggregate forecasts ye
t+1 become inactive against the exogenous variables wt. Even if one of the

exogenous variables, e.g., wi,t, fluctuates, only agents of type i will update their expectations

given estimated parameters, while the other types of agents will not. Then, ye
t+1 will not be

revised as large as when all agents homogeneously respond to wi,t. As a result, the economy

tends to be stable when agents have inadequate and different information15.

Only if correlations between exogenous variables are high, the stability of the equilibrium

under heterogeneous learning will be comparable with the stability of the equilibrium under

homogeneous learning. If the correlations are high, the fluctuation of wi,t will lead to the fluctu-

ations of other exogenous variables. Hence, even if agents have mutually different information,

agents of different types tend to simultaneously update their expectations and make the equi-

librium as unstable as the equilibrium under homogeneous learning. The effect of correlations

between exogenous variables will be calibrated in the next section.

15Berardi (2007) numerically shows the possibility that the equilibrium may be stable under heterogeneous
learning, but unstable uder homogeneous learning. We show a similar possibility analytically.
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5 Example: New Keynesian Model

In this section, we confirm our findings numerically by calibrating a basic New Keynesian

model16. 
xt = −σ

(
it − πe

t+1

)
+ xe

t+1 + gt,
πt = κxt + βπe

t+1 + ut,
gt = µgt−1 + g̃t,
ut = ρut−1 + ũt.

(24)

The model has three endogenous variables: output gap xt, inflation rate πt, and nominal interest

rate it. It has two exogenous variables (n = 2), a demand shock gt v
(
0, σ2

g

)
and a supply shock

ut v (0, σ2
u), which follow disturbances g̃t v

(
0, σ2

g̃

)
and ũt v (0, σ2

ũ). The correlation matrix of

gt and ut is defined by Γ2 =

(
1 ρgu

ρgu 1

)
, where ρgu is a correlation between gt and ut. This

correlation is originally generated by the correlation between g̃t and ũt. We assume σ, κ > 0,

0 < β < 1, and 0 < µ, ρ < 1. To simplify our analysis, we assume that the persistence of the

supply shock ut is no shorter than that of the demand shock gt; 0 < µ ≤ ρ < 1.

To close our model, a Taylor-type nominal interest rate rule is chosen by the central bank

as follows.

it = φππt + φxxt. (25)

φπ, φx are the policy parameters of the central bank, which are assumed to be positive.

This model is summarized by the representation of the system (1):

yt = (xt, πt)
′ , wt = (gt, ut)

′ , vt = (g̃t, ũt)
′ ,

B =

(
1 + σφx σφπ

−κ 1

)−1 (
1 σ
0 β

)
, C =

(
1 + σφx σφπ

−κ 1

)−1

, Φ2 =

(
µ 0
0 ρ

)
,

Ψ2 =
1

2

(
σg 0
0 σu

)(
1 ρgu

ρgu 1

)(
σg 0
0 σu

)−1

.

16The structure and notations of our model follow those given by Evans and Honkapohja (2008). One difference
is that gt and ut are allowed to correlate with each other. Our model is fundamentally equivalent with the models
given by Woodford (1999) and Bullard and Mitra (2002).
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This has no effect on our results. Finally, we suppose that this model satisfies Assumptions 1

and 2.

5.1 Stability Conditions

First, to consistently obtain stability conditions of equilibria under different learning rules, we

provide a lemma.

Lemma 2 Define a 2 × 2 matrix X whose eigenvalues are all real and in [0, 1]. If

B =

(
1 + σφx σφπ

−κ 1

)−1 (
1 σ
0 β

)
, then

1. the real parts of eigenvalues of X ⊗ B − I4 are all negative if and only if

κ (φπ − λ [X]) + φx (1 − βλ [X]) > −(1 − λ [X]) (1 − βλ [X])

σ
;

2. as λ [X] increases, the region (φπ, φx) that satisfies the above inequality will contract.

The proof is in Appendix C.

5.1.1 Homogeneous Learning

Under the correctly specified PLM with constant terms (4), the REE is locally stable if and

only if the Jacobian (9) has negative real parts of eigenvalues. Eigenvalues of (9) are equivalent

with those of I2 ⊗B − I4. Following Lemma 2.1, X = I2 and λ [I2] = 1. The stability condition

is

κ (φπ − 1) + φx (1 − β) > 0. (26)
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This is equivalent to the Taylor principle. This confirms the seminal result by Bullard and

Mitra (2002) that the REE under a correctly specified PLM with constant terms is stable if and

only if the central bank follows the Taylor principle.

If agents specify the PLM without constant terms (11), the sufficient and necessary condition

for stability is that the Jacobian (10) has negative real parts of eigenvalues. Following Lemma

2.1, X = Φ′
2 and λ [Φ′

2] = ρ. The stability condition is

κ (φπ − ρ) + φx (1 − βρ) > −(1 − ρ) (1 − βρ)

σ
. (27)

As λ [Φ′
2] < λ [I2] and Lemma 2.2, the region (φπ, φx) to satisfy (27) is larger than the region

to satisfy (26). This result reinforces Corollary 1 that stability conditions are less restrictive if

agents use the PLM without constant terms instead of the PLM with constant terms. Thus,

if agents recognize no existence of constant terms in the system (1), the central bank does not

have to respond to economic variables as actively as the Taylor principle dictates to ensure the

learnability of the REE.

5.1.2 Heterogeneous Learning

Next, we consider the existence of two types of agents. Type 1 can observe the demand shock

gt but cannot observe the supply shock ut, while Type 2 can observe ut but cannot observe gt.

The populations of both types are set at 1
2
.

As is shown in Proposition 2.1, if agents specify the heterogeneous and underparameterized

PLMs with constant terms, (12), the sufficient and necessary condition for the HME to be stable

is the same as (26).

Under the heterogeneous and underparameterized PLMs without constant terms, (23), the
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HME is locally stable if and only if the Jacobian (22) has negative real parts of eigenvalues.

Following Lemma 2, X =
(
Φ2

(
1
2
Ψ2

))′
and

λ

[(
Φ2

(
1

2
Ψ2

))′]
=

1

4
(µ + ρ) +

1

4

√
(µ + ρ)2 − 4µρ

(
1 − ρ2

gu

)
, (28)

which is in (0, ρ). The stability condition is

κ

(
φπ − λ

[(
Φ2

(
1

2
Ψ2

))′])
+ φx

(
1 − βλ

[(
Φ2

(
1

2
Ψ2

))′])

> −
(
1 − λ

[(
Φ2

(
1
2
Ψ2

))′])(
1 − βλ

[(
Φ2

(
1
2
Ψ2

))′])
σ

. (29)

As λ
[(

Φ2

(
1
2
Ψ2

))′]
< λ [Φ′

2] = ρ and Lemma 2.2, the stability conditions of the HME are

less restrictive than the conditions of the REE, (27). This confirms Proposition 3. Therefore, if

agents choose heterogeneous and misspecified learning rules, the central bank may be less active

in ensuring the learnability of the equilibrium.

5.1.3 Impact of the correlation of demand and supply shocks

Furthermore, in this basic model, we can clarify the relationship between the correlation of

demand and supply shocks, ρgu, and the stability conditions under heterogeneous learning.

Proposition 4 In the basic New Keynesian model (24) with the Taylor-type nominal interest

rate rule (25), as the correlation of demand and supply shocks, ρgu, decreases, stability conditions

of the HME become further less restrictive than the Taylor principle.

The proof is in Appendix D.

This proposition is intuitive. If exogenous variables are not correlated with one another,

they are idiosyncratic. This situation means an increase in heterogeneity in the sense that
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agents specify heterogeneous PLMs. As a result, stability conditions become less restrictive.

On the other hand, for example, if ρgu = 1 and µ = ρ, then (28) gives λ
[(

Φ2

(
1
2
Ψ2

))′]
= ρ;

the conditions become equivalent to those under homogeneous learning, (27). This is because if

ρgu = 1 and µ = ρ, both types of agents act as if they observe and respond to common variables.

As a result, the stability conditions are reduced to those under homogeneous learning.

5.2 Calibrations

We confirm numerically the previous results by assuming κ = 0.125, β = 0.99, σ = 1, µ = 0.8,

and ρ = 0.9. Similar calibrations are shown by Evans and Honkapohja (2001, chapters 4 and

8).

5.2.1 Stability Conditions

First, we show that stability conditions of the HME are less restrictive than the conditions of

the REE under a homogeneous and correctly specified learning rule. Figure 1 shows the regions

of values of the policy parameter (φπ, φx) to satisfy stability conditions. In the first quadrant

(φπ, φx > 0), the region under heterogeneous learning perfectly encompasses the region under

homogeneous learning, irrespective of the value of the correlation ρgu. In addition, as ρgu

decreases, the region under heterogeneous learning expands. If ρgu < 0.7, this region almost

encompasses the first quadrant, meaning that almost any values of (φπ, φx) satisfy the stability

conditions17. Hence, if agents form heterogeneous expectations based on their observable shocks,

the central bank might not have to address the learnability of the equilibrium.

17Cover et al. (2006) estimate the correlation between demand and supply shocks in a simple AD-AS model to
be approximately 0.7 using US data. Enders and Hurn (2007), using Australian data, estimate the correlation
to be 0.73.
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5.2.2 Parameters Updating

Next, we calibrate the dynamics of parameter estimates at ≡
(

ax,t

aπ,t

)
and ct ≡

(
cxg,t cxu,t

cπg,t cπu,t

)
under recursive least squares and find differences between homogeneous and heterogeneous learn-

ing. We set the variance-covariance matrix of gt and ut to be

(
0.69 0.71
0.71 1.32

)
, which corresponds

to the variance-covariance matrix of g̃t and ũt by

(
0.25 0.2
0.2 0.25

)
. The correlation of gt and ut,

ρgu, is 0.75. To simplify our analysis, we assume φx = 0. We set the initial beliefs of agents on

the parameters in their PLMs to be unity, that is, a0 =

(
1
1

)
and c0 =

(
1 1
1 1

)
18.

Figure 2 shows the dynamics of the estimates when the central bank chooses an active policy

φπ = 5, which satisfies the stability condition under both homogeneous and heterogeneous

learning rules with constant terms, (26). Solid lines (blue) represent the transitions of estimates

under homogeneous learning. Dotted (black) and dashed (red) lines represent the transitions

of estimates of agents of Types 1 and 2 under heterogeneous learning, respectively. Under

heterogeneous learning, at is estimated by both types of agents, whereas (cxg, cπg) and (cxu, cπu)

are respectively estimated by agents of Type 1 and 2. We confirm that all estimates converge to

the fixed points and that the HME under heterogeneous learning diverts from the REE under

homogeneous learning.

Note that even if agents exclude constant terms from their learning rules, this active policy

continues to ensure the learnability of the REE and the HME (Corollaries 1 and 2). One may

consider that the dynamics of ct under learning rules without constant terms are almost the

same as those under the rules with constant terms. Hence, those results are abbreviated.

Next, Figure 3 shows the dynamics of the estimates when the central bank chooses a passive

18In addition, we set the initial beliefs on Ri,t = t−1
∑t

s=1 zi,tz
′
i,t where z′i,t = (1, wi,t), which are only shown

in Appendix A, to be equal to its unconditional expectation, Eziz
′
i.
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policy φπ = 0.5, which does not satisfy the stability condition under a homogeneous learning

rule without constant terms, (27), but satisfies the condition under heterogeneous learning rules

without constant terms, (29). Then, all estimates of a explode irrespective of heterogeneity

in expectations. On the other hand, (cxu, cπu) explode under homogeneous learning, while all

estimates of c converge to the fixed point under heterogeneous learning. Thus, this figure

proves Proposition 3 that stability conditions under heterogeneous learning are less restrictive

than those under homogeneous learning. In addition, under heterogeneous learning, the HME

is stable if constant terms are excluded from the PLMs.

Furthermore, we will figure out the relationship between the correlation of demand and

supply shocks and stability conditions under adaptive learning. We assume a further passive

policy φπ = 0.1, which satisfies the stability conditions under neither homogeneous learning,

(27), nor heterogeneous learning, (29). Figure 4 shows the dynamics under φπ = 0.1. Even

under heterogeneous learning, several estimates of c also explode. Then, the HME as well as

the REE is unstable.

On the other hand, if gt and ut are not correlated, that is, ρgu = 0, then the HME becomes

stable. Figure 5 shows the dynamics under φπ = 0.1 and ρgu = 0, which do not satisfy the

stability condition under a homogeneous learning rule without constant terms, (27), but satisfies

the condition under heterogeneous learning rules without constant terms, (29). Estimates of c

under homogeneous learning keep exploding, while estimates of c under heterogeneous learning

converge to the fixed point. This figure reinforces Proposition 4 that as ρgu decreases, stability

conditions under heterogeneous learning become further less restrictive.

Therefore, in a basic NK model, if agents conduct heterogeneous learning, and further, if
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agents specify PLMs without constant terms, then the learnability of the equilibrium will hold

with almost any values of policy parameters of the central bank.

6 Conclusions

This paper has investigated characteristics of equilibrium and its stability conditions under

heterogeneous learning in an environment in which each agent has an imperfect and different

information set about exogenous variables and forms an underparameterized and heterogeneous

belief of the structure of the economy.

The findings of the paper are as follows. First, under heterogeneous learning, the economy

converges to a Heterogeneous Misspecification Equilibrium (HME) that deviates from a rational

expectations equilibrium (REE). Next, the stability conditions of the HME are less restrictive

than conditions of the REE. For example, in a basic NK model with a Taylor-type monetary

policy rule, the central bank is allowed to choose a wider range of values of policy parameters

to ensure economic stability under heterogeneous learning than those that are permitted under

homogeneous learning. In particular, if the correlation between demand and supply shocks is

low, the central bank might not have to address the learnability of the equilibrium.

In future works, we could examine the relationship between the degree of heterogeneity

in adaptive learning and the stability conditions of the equilibrium. Most studies, including

the present study, examine conditions for the learnability of the equilibrium in situations in

which the degree of heterogeneity is given. We may be able to clarify whether and how the

learnability of the equilibrium is affected by a change in the degree of heterogeneity in learning.

If the number of exogenous variables increases so that the degree of the heterogeneity among

28



agents’ learning increases, stability conditions of the equilibrium might be further loosened.

Appendix

A Derivation of Definition 1

We follow the methodology of Evans and Honkapohja (2001, chapter 13) to obtain the ordinary

differential equations under misspecified PLMs.

Agent i forms ye
t+1 by real-time learning with the misspecified PLM (12) and the information

set {ys, wi,s}t
s=1. The coefficient parameters, φ′

i,t = (ai,t, ci,t), are given by the least-squares

projection of yt on z′i,t = (1, wi,t). That is, φ′
i,t must satisfy

Ezi,t

(
yt − φ′

i,tzi,t

)
= 0,

and the updating rule of φ′
i,t is shown as the recursive least-squares representation:

φi,t = φi,t−1 + t−1R−1
i,t zi,t−1

(
yt−1 − φ′

i,t−1zi,t−1

)′
, (30)

Ri,t = Ri,t−1 + t−1
(
zi,t−1z

′
i,t−1 − Ri,t−1

)
,

where Ri,t = t−1
∑t

s=1 zi,tz
′
i,t. The operator E denotes the expectation of variables, for φi fixed,

taken over the invariant distributions of the exogenous variables wt. See Evans and Honkapohja

(2001, chapter 10.3) for the detail of obtaining recursive least squares equations to satisfy the

orthogonality condition in the models with contemporaneous expectations.

The actual law of motion under the real-time updating is given (16). By substituting (16)

into (30), the stochastic recursive algorithm (SRA) for φi,t is obtained as follows.

φi,t = φi,t−1+t−1R−1
i,t zi,t−1 (1, w1,t−1, ..., wn,t−1)

[(
D0,t−1 D1,t−1 · · · Dn,t−1

) − (
ai,t−1 c+

i,t−1

)]′
,
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where c+
i,t is a m× n matrix (0, ...,0, ci,t,0, ...,0), which corresponds to ct ≡ (c1,t, c2,t, ..., cn,t) in

which the columns except for ci,t are zero, and D0,t ≡ 1
n
B (Im, ..., Im) at and Di,t ≡ 1

n
Bci,tϕi +Ci

for i ∈ {1, ..., n}.

The convergence of the SRA is studied as the stochastic approximation approach by Marcet

and Sargent (1989). This is also introduced by Evans and Honkapohja (2001, chapter 6). By

letting Eziz
′
j = limt→∞ Ezi,tz

′
j,t for any i, j ∈ {1, ..., n},

ER−1
i zi,t−1 (1, w1,t−1, ..., wn,t−1)

[(
D0 D1 · · · Dn

) − (
ai c+

i

)]′
= R−1

i

((
Ezi,t−1z

′
i,t−1

) [(
D0 Di

) − (
ai ci

)]′
+ E

(
1

wi,t−1

) (
n∑

j=1

wj,t−1D
′
j − wi,t−1D

′
i

))

= R−1
i

 (
Ezi,t−1z

′
i,t−1

) [(
D0 Di

) − (
ai ci

)]′
+

(
0∑n

j=1 (Ewi,t−1wj,t−1) D′
j − (Ewi,t−1wi,t−1) D′

i

) 
= R−1

i

(
Ezi,t−1z

′
i,t−1

) [(
D0 Di

) − (
ai ci

)]′
+

(
0∑n

j=1 (Ewi,t−1wi,t−1)
−1 (Ewi,t−1wj,t−1) D′

j − D′
i

)  .

Hence, the associated ordinary differential equation (ODE) for the SRA is obtained as

dφi

dτ
= R−1

i (Eziz
′
i) (Ti (a, c) − (ai, ci))

′ , (31)

dRi

dτ
= Eziz

′
i − Ri, (32)

where

Ti (a, c) = (Ti,a (a) , Ti,c (c)) =

(
D0,

n∑
j=1

DjΩijΩ
−1
ii

)
.

Ωij is a covariance of wi and wj; then, Ωij = σiiρijσjj and Ωij = Ωji. Since Ri and Eziz
′
i in (32)

are asymptotically equal, R−1
i (Eziz

′
i) in (31) globally converges to unity. Hence, the stability
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of the ODE for φ′
i = (ai, ci) is determined by a smaller differential equation.

dφi

dτ
= Ti (a, c) − (ai, ci) .

After obtaining the ODEs of all agents, we can summarize the dynamics of the parameter

estimates of all types, {φi}n
i=1, as the following ODE of a = (a′

1, ..., a
′
n)′ and c = (c1, ..., cn),

da

dτ
= Ta (a) − a,

dc

dτ
= Tc (c) − c,

where

Ta (a) ≡

 T1,a (a)
...

Tn,a (a)

 = (Ξn ⊗ B) a,

Tc (c) ≡ (T1,c (c) , ..., Tn,c (c)) =

(
1

n
BcΦn + C

)
Ψn,

Ψn ≡


1 Ω12Ω

−1
22 · · · Ω1nΩ−1

nn

Ω21Ω
−1
11 1 · · · Ω2nΩ−1

nn
...

...
. . .

...
Ωn1Ω

−1
11 Ωn2Ω

−1
22 · · · 1

 = diag (σii) Γndiag (σii)
−1 .

These results are summarized in Definition 1.

B Proof of Lemma 1

In order to prove Lemma 1, we initially provide two mathematical lemmas.

Lemma 3 If any real matrix X is positive (resp., negative) definite, and if any real matrix Y

is of the same dimension and nonnegative (nonpositive) definite, then eigenvalues of XY are

all real and nonnegative (nonpositive).
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Proof. If γ is any eigenvalue of XY , there exists a non-null vector w such that XY w = γw.

Write w = x + yi and γ = α + βi, where x and y are real vectors, and α and β are real scalars.

Write also the complex conjugate of w as w̄ = x − yi. Premultiply both sides by w̄′X−1,

w̄′X−1XY w = w̄′Y w = γw̄′X−1w. (33)

Expanding (33),

w̄′Y w = (x′Y x + y′Y y) + i (x′Y y − y′Y x)

= x′Y x + y′Y y, (34)

and

γw̄′X−1w = (α + βi)
((

x′X−1x + y′X−1y
)

+ i
(
x′X−1y − y′X−1x

))
= α

(
x′X−1x + y′X−1y

)
+ iβ

(
x′X−1x + y′X−1y

)
, (35)

where x′Y y − y′Y x = 0 and x′X−1y − y′X−1x = 0. Further, equating real and imaginary parts

of (34) and (35),

x′Y x + y′Y y = α
(
x′X−1x + y′X−1y

)
, (36)

0 = β
(
x′X−1x + y′X−1y

)
. (37)

If X is positive (negative) definite, and if Y is nonnegative (nonpositive) definite, then x′X−1x+

y′X−1y > (<)0 and x′Y x + y′Y y ≥ (≤)0. To satisfy (37), β = 0; then γ is real. To satisfy

(36), α ≥ (≤)0; then γ is nonnegative (nonpositive). Therefore, eigenvalues of XY are all real

and nonnegative (nonpositive). (To prove this lemma, we referred to the Proof of Lemma 3

and Theorem 1 in Kenneth J. Arrow and Maurice McManus, “A Note on Dynamic Stability,”

32



Econometrica, 1958, 26, 448-454.)

¥

Lemma 4 0 ≤ λ
[(

Φn

(
1
n
Ψn

))′]
< λ [Φ′

n] < 1.

Proof. Because the correlation matrix Γn is a nonnegative definite matrix, the eigenvalues

of 1
n
Γn are all nonnegative, and at least one of them is positive. Then, λ

[
1
n
Γn

]
> 0. The

diagonal elements of 1
n
Γn are all 1

n
, so tr

(
1
n
Γn

)
= 1. Then λ

[
1
n
Γn

]
< 1. As a result,

0 < λ

[
1

n
Γn

]
< 1. (38)

Next, as Φn ≥ 0 and 1
n
Γn ≥ 0 from Assumption 2, 0 ≤ Φn

(
1
n
Γn

) ≤ λ [Φn]
(

1
n
Γn

)
. By the Perron-

Frobenius Theorem (see Peter Berck and Knut Sydsaeter, Economists’ Mathematical Manual

Second Edition, Springer-Verlag, 1993, p.110), this inequality means 0 ≤ λ
[
Φn

(
1
n
Γn

)] ≤

λ
[
λ [Φn]

(
1
n
Γn

)]
= λ [Φn] λ

[
1
n
Γn

]
. By (38), λ [Φn] λ

[
1
n
Γn

]
< λ [Φn] < 1. As a result,

0 ≤ λ

[
Φn

(
1

n
Γn

)]
< λ [Φn] < 1. (39)

Finally, Notice that eigenvalues of Φn

(
1
n
Ψn

)
are equivalent to those of Φn

(
1
n
Γn

)
because

Φn

(
1
n
Ψn

)
= diag (σii)

(
Φn

(
1
n
Γn

))
diag (σii)

−1. Therefore, (39) results in

0 ≤ λ

[(
Φn

(
1

n
Ψn

))′]
< λ [Φ′

n] < 1.

¥

With Lemmas 3 and 4, Lemma 1 is obtained as follows. First, since Φn is a positive definite

matrix and 1
n
Ψn is a nonnegative definite matrix, eigenvalues of Φn

(
1
n
Ψn

)
and

(
Φn

(
1
n
Ψn

))′
are
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found to be all real and nonnegative by Lemma 3. This result and Lemma 4 lead to Lemma

1.1. Next, λ [Ξn] = 1; then Lemma 4 leads to λ
[(

Φn

(
1
n
Ψn

))′]
< λ [Φ′

n] < λ [Ξn] = 1. In

addition, eigenvalues of
(
Φn

(
1
n
Ψn

))′
, Φ′

n, and Ξn are all real and nonnegative. Thus, their

Kronecker products with matrix B that suffices λ [B] > 0 hold the same inequalities as Lemma

1.2. Finally, Lemma 1.3 is trivial.

¥

C Proof of Lemma 2

Define the eigenvalues of X as 0 ≤ χi ≤ 1 （i = 1, ..., n） and the eigenvalues of B as δj

（j = 1, ..., m）; then the eigenvalues of X ⊗B are given by χiδj for any i, j. First, if λ [B] ≤ 0,

the real parts of eigenvalues of X ⊗B− I4 are necessarily all negative. Next, suppose λ [B] > 0.

Since χi ≥ 0, λ [X ⊗ B] = λ [X] λ [B] = λ [λ [X] B]; then λ [X ⊗ B − Imn] = λ [λ [X] B − Im].

This means that eigenvalues of X ⊗ B − Imn are all negative if and only if eigenvalues of

λ [X] B−Im have all negative real parts. The characteristic equation of λ [X] B−Im is obtained

by

q (x) = x2 + p1x + p0,

p0 =
(1 − λ [X]) (1 − βλ [X]) + σ (κ (φπ − λ [X]) + φx (1 − βλ [X]))

1 + κσφπ + σφx

,

p1 =
(1 − λ [X]) + (1 − βλ [X]) + κσ (2φπ − λ [X]) + σφx (2 − βλ [X])

1 + κσφπ + σφx

,

where p1 = p0 + (1−βλ[X])+σ(κφπ+φx)
1+κσφπ+σφx

, that is, p1 > p0. Proposition 10.3 of Evans and Honkapohja

(2001) implies that the equilibrium is locally stable under adaptive learning if and only if

the real parts of all eigenvalues are negative. According to the Routh Theorem (see Alpha
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C. Chiang, Fundamental Methods of Mathematical Economics: Second Edition, McGraw-Hill,

1974), eigenvalues of λ [X] B − Im have all negative real parts if and only if |p1| and

∣∣∣∣ p1 0
1 p0

∣∣∣∣
are all positive, that is, p1 > 0 and p1p0 > 0. As p1 > p0, those conditions are reduced to p0 > 0,

which is

κ (φπ − λ [X]) + φx (1 − βλ [X]) > −(1 − λ [X]) (1 − βλ [X])

σ
.

As 0 ≤ λ [X] ≤ 1, the second part of the Lemma is easily obtained.

¥

D Proof of Proposition 4

Equation (28) gives d
dρgu

λ
[(

Φ2

(
1
2
Ψ2

))′]
> 0. Furthermore, note Lemma 2.2. Therefore, as

ρgu decreases, λ
[(

Φ2

(
1
2
Ψ2

))′]
also decreases, and hence the region (φπ, φx) that satisfies the

condition for stability will expand.

¥
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Figure 1   Stability Conditions on the Policy Parameters (fp, fx )
and the Effect of Correlation (rgu )

(b) Heterogeneous Learning
(n  = 2, rgu  = 1.0)

(a) Homogeneous Learning
(n  = 1)
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(c) Heterogeneous Learning
(n  = 2, rgu  = 0.9)

(d) Heterogeneous Learning
(n  = 2, rgu  = 0.7)
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Note:  This figure shows the values of policy parameters (fp, fx ) to ensure the
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stability of the equilibrium under  adaptive learning and the effect of
correlation of demand and supply shocks (rgu ). In each panel, the bright area
represents the region of the parameters satisfying the stability conditions.



0 500 1000
-3

-2

-1

0

1

2

3

time

a x

0 500 1000
-8

-6

-4

-2

0

2

4

time

c xg

0 500 1000
-10

-8

-6

-4

-2

0

2

time

c x,
u

0 500 1000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

a 

0 500 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

c 
 g

0 500 1000
0

0.5

1

1.5

time

c 
 u

Figure 2   Dynamics of estimates (a
t
, c

t
) under 


=5 and 

gu
=0.75



0 5000 10000
0

2

4

6

8

10

12

time

a x

0 5000 10000
-6

-4

-2

0

2

4

6

8

time

c xg

0 5000 10000
0

5

10

15

20

25

time

c x,
u

0 5000 10000
0

1

2

3

4

5

6

7

time

a 

0 5000 10000
-6

-4

-2

0

2

4

6

8

time

c 
 g

0 5000 10000
0

5

10

15

20

time

c 
 u

Figure 3   Dynamics of estimates (a
t
, c

t
) under 


=0.5 and 

gu
=0.75



0 5000 10000
0

10

20

30

40

time

a x

0 5000 10000
-15

-10

-5

0

5

10

15

20

time

c xg

0 5000 10000
0

20

40

60

80

100

time

c x,
u

0 5000 10000
0

5

10

15

20

time

a 

0 5000 10000
-10

-5

0

5

10

time

c 
 g

0 5000 10000
0

10

20

30

40

50

time

c 
 u

Figure 4   Dynamics of estimates (a
t
, c

t
) under 


=0.1 and 

gu
=0.75



0 5000 10000
0

10

20

30

40

50

time

a x

0 5000 10000
0

5

10

15

time

c xg

0 5000 10000
0

10

20

30

40

50

time

c x,
u

0 5000 10000
0

5

10

15

20

time

a 

0 5000 10000
-1

0

1

2

3

4

5

6

time

c 
 g

0 5000 10000
0

5

10

15

20

25

time

c 
 u

Figure 5   Dynamics of estimates (a
t
, c

t
) under 


=0.1 and 

gu
=0


	Text2: Note: This figure shows the dynamics of the estimates when the central bank chooses an active policy (phi_pi = 5), which satisfies stability conditions under both homogeneous and heterogeneous learning rules with constant terms. Solid lines (blue) represent the transition of estimates under homogeneous learning. Dotted (black) and dashed (red) lines represent the transition of estimates of agents of Type 1 and 2 under heterogeneous learning, respectively. Under heterogeneous learning, (a_x, a_pi) is estimated by both types of agents, whereas (c_xg, c_pi g) and (c_xu, c_pi u) are respectively estimated by agents of Type 1 and 2. The dynamics of c under learning rules without constant terms is almost the same as the above dynamics of c.
	Text3: Note: This figure shows the dynamics of the estimates when the central bank chooses a passive policy (phi_pi = 0.5), which does not satisfy the stability condition under a homogeneous learning rule without constant terms, but satisfies the condition under heterogeneous learning rules without constant terms. Other details are seen in Figure 2.
	Text4: Note: This figure shows the dynamics of the estimates when the central bank chooses a further passive policy (phi_pi = 0.1), which satisfies the stability conditions under neither homogeneous learning nor under heterogeneous learning. Other details are seen in Figure 2.
	Text5: Note: This figure shows the dynamics of the estimates where the correlation of demand and supply shocks is low (rho = 0). The central bank chooses a further passive policy (phi_pi = 0.1), which does not satisfy the stability condition under a homogeneous learning rule without constant terms, but satisfies the condition under heterogeneous learning rules without constant terms. Other details are seen in Figure 2.


