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Abstract

Many past studies in the literature of the law of one price (LOP) show statistically significant but
economically subtle roles of geographical distance on regional retail price differentials. In this paper,
we challenge this empirical “death of distance” as a dominant source of violations of the LOP by
making three contributions. First, this paper investigates a unique daily data set of wholesale prices
of agricultural products in Japan that enables us to identify source regions of agricultural products
and observe the daily delivery patterns of these products to consuming regions. Second, we build a
simple structural model to explain the observed product-delivery patterns and claim theoretically
that ignoring the underlying choice of delivery might result in a serious under-bias toward our
inference on the role of distance in regional price dispersions due to sample selection. Finally, as the
third contribution, we estimate a sample-selection model, which is imposed theoretical restrictions
of our structural model, using the data of wholesale prices of several vegetables. Across all the
vegetables this paper scrutinizes, we find large estimates of the elasticity of transportation costs
with respect to geographical distance relative to the existing estimates. This paper, hence, provides
evidence that conventional estimates of the distance elasticity could be heavily biased downwards
and spuriously underestimate the role transportation costs play in regional price dispersions and
LOP violations.
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1. Introduction

Does an identical good share an identical price across geographically distinct places? Many
of recent papers approach this fundamental question of the law of one price (LOP) exploiting micro-
level information of retail prices observed across retail stores internationally as well as domestically.
Since the seminal works by Parsley and Wei (1996) and Engel and Rogers (1996), one of the most
robust findings within the literature of the LOP is a statistically significant effect of geographical
distance on statistical properties of cross-regional retail price differentials. Given economic rationale
provided by iceberg-type transportation costs, this robust finding suggests that transportation costs
play a statistically significant role in the observed violations of the absolute LOP hindering cross-
regional arbitrages of products.

The size of the distance effect that is commonly estimated in this literature, nevertheless,
seems economically subtle. Regressing the absolute values of the logs of price differentials of iden-
tical products that are surveyed in two retail stores in two distinct regions on the logs of the
corresponding geographical distances, many of past studies infer less than about 3 % elasticity of
price differential with respect to distance.1 This means that even when the geographical distance
of two distinct cities becomes double, the price differential of a product between the cities increases
at best only 3 % on average. Since the standard deviation of the absolute values of the logs of
retail price differentials is typically reported around 20 % in this literature, we need the standard
deviation of the logs of distances of 6.666 (=0.20/0.03) if we want to explain the whole price dis-
persions only by cross-regional distances. The required standard deviation of the logs of distances,
however, is too large to be consistent with actual data.2 A natural inference from this observation
is that transportation costs, which are approximately measured by distances, could not be a main
economic source of regional price dispersions. In this sense, a geographical distance is empirically
“dead” as a prime suspect for the commonly observed violation of the LOP.

What is further puzzling is the fact that past studies of international trade unambiguously
recognize that geographical distance plays economically crucial roles in determinations of bilat-
eral trade directions and volumes. For example, Anderson and van Wincoop (2003) estimate a
gravity model of bilateral trade volumes controlling for multilateral trade resistance and infer the
distance elasticity of transportation costs to be around 20 % conditional on a calibrated elasticity
of substitution equal to 5. Estimating a gravity model using bilateral export volume data across
183 countries, Helpman et al.(2008) find that the distance elasticity of bilateral export volumes is
about 80 % once they take into account firms’ selections into bilateral exports as well as firms’
heterogeneity in export volumes.3 Interestingly, their estimate suggests a 20 % distance elasticity

1Among a series of past studies, for example, Broda and Weinstein (2008) observe the 1.2 % distance elasticity of
the absolute log price differentials within barcode-level scanner data of retail prices at retail stores across Canadian
and the U.S. cities. Engel et al.(2005) find the same distance elasticity of 0.32 % with annual panel data distributed
by Economic Intelligence Unit (EIU) that covers retail prices of 100 consumer goods sampled in 17 Canadian and
the U.S. cities. Ceglowski (2003) reports 1.6-2.0 % estimates of the distance elasticities of 45 different products
across 25 cities in Canadian provinces. Baba (2007) scrutinizes the Japanese and Korean retail price survey data and
estimates less than about 3 % of the same distance elasticity after taking into account the border effect between the
two countries.

2For instance, the standard deviation of the log of distance between two prefectural capital cities in Japan is 0.803
over all the 1081 city-pairs from 47 prefectures.

3In their meta analysis based on 1,051 past estimates of distance effects, Disdier and Head (2008) report the
average of 0.893.
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of transportation costs once we calibrate the price elasticity of demand equal to 5 as in Ander-
son and van Wincoop (2003). Since these studies also exploit iceberg-type transportation costs
to characterize their gravity equations, the huge discrepancy in terms of the estimated size of the
distance elasticity of transportation costs between the above two research agenda — the absolute
LOP and the gravity model of international trade — is indeed an empirical challenge students of
international economics need to explore profoundly.

In this paper, we tackle this empirical “death of distance” in regional price dispersions by
making three contributions. First, this paper investigates a unique daily data set of wholesale
prices of agricultural products in Japan. We follow the spirit of Parsley and Wei (1996) by using
disaggregate price data within a country to avoid any potential effects of cross-country differences
in tax and currency on our inference on transportation costs. Scrutinizing information of wholesale
prices helps us make our estimate of transportation costs immune against local distributional costs
as well as retailers’ pricing strategies. More importantly, there are two outstanding characteristics
of this data set: (i) we can identify the wholesale prices of an identical product at both producing
and consuming regions and (ii) we can also grasp daily delivery patterns of an identical product from
the former region to the latter. The first characteristic is essential for identifying transportation
costs because, as discussed by Anderson and van Wincoop (2004), only when the source region of
a product is identified, correct information of a trade cost could be extracted from relative prices
at consuming regions to the corresponding source region. The main difficulty past studies face is in
the fact that a retail price survey at retail stores rarely provides information of the source regions
of a product and the market prices prevailed in these regions. Our data set, on the other hand,
shows us not only in which region in Japan a variety of fruits and vegetables are produced but also
at what wholesale prices these products are sold in their originated regions.4

Identification of the source region of a product, however, immediately leads to another fun-
damental question: how far a product is delivered from the source region? The second outstanding
aspect of our data set empirically shows us the answer to this question. As the second contribution
of this paper, we build a model to explain the observed patterns of product delivery and claim theo-
retically that ignoring the underlying choice of delivery might result in a serious under-bias toward
our inference on the role of distance in regional price dispersions. To see this, suppose that trans-
portation costs are unobservable and comprise two components: the one increasing proportionally
in geographical distance and the other unobservable. A rise in transportation costs increases the
price of the product at a consuming region and depresses the corresponding local demand for the
product. Given the shape of the demand function, this fall in local product demand then tends to
lower the profitability and, as a result, the probability of delivery to the consuming region from
the producing region. Since the price of the product at a consuming region is observed only when
a product delivery indeed occurs, an inference drawn only from information of price differentials
could be subject to a sample-selection bias due to an incidental data truncation. In particular, the
direction of the potential bias should be downwards because a rise in the unobservable component
of transportation costs in general increases a price differential but deteriorates a probability of
delivery at the same time.

4In a recent paper, Inanc and Zachariadis (2010) identify source regions of products reported in the Eurostat
survey in several indirect ways and find around 10 % distance elasticity of price differentials in the 1990 survey. This
could be indirect evidence that identification of the origin of a product is essential for inference of transportation
costs.
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In this paper, following Melitz (2003) and Helpman et al.(2008), we build a simple structural
model of cross-regional product-delivery in which cross-regional price differentials and delivery
patterns are jointly determined by the same structure of transportation costs. We then show that
the degree of a sample-selection bias depends critically on two structural parameters of the model:
the elasticity of transportation costs to distance and that of demand to price. Our theoretical
analysis implies that drawing a correct inference on transportation costs requires us to estimate
these two elasticities jointly. To do so, we propose a structural sample-selection model, which
consists of the price differential and sample-selection equations, imposing nonlinear theoretical
restrictions on the joint probability distribution of data. We develop a full information maximum
likelihood (FIML) estimator for the empirical model. Our Monte Carlo experiments based on the
model not only show us that given the price elasticity of demand, the degree of sample selection
depends positively on the distance elasticity of transportation costs but also uncover two crucial
facts: (i) the standard exercise of regressing price differentials on the corresponding distances
provides a heavily downwards-biased estimate of the true distance elasticity of transportation costs
and (ii) our FIML estimator successfully identifies the distance elasticity.

Finally, as the third contribution of this paper, we estimate our sample-selection model
by FIML using the data of wholesale prices of several vegetables. The estimated sample-selection
model passes two diagnosis criteria in that it does a fairly good job in replicating the actual delivery
patterns of these vegetables as well as the actual data association of price differentials with distances.
We find large estimates of the distance elasticity of transportation costs across all the vegetables
relative to the existing estimates in the LOP literature: all of them are more than 30 % and their
average is about 40 %. Given the 40 % distance elasticity of transportation costs, we need only the
standard deviation of the logs of distances of 0.25 (=0.2/0.4) if we want to explain only by distances
the whole part of the commonly observed standard deviation of the logs of price differentials of 20 %.
The estimate of this paper, therefore, implies an economically dominant role of transportation costs
in regional price dispersions. It is worth noting that this large distance elasticity does not necessarily
stem from a particular characteristic of the product category of agricultural products. To prove
this, we also conduct the OLS regression exercise without respecting the selection mechanism using
our wholesale price data. Interestingly, we obtain the conventional range of the OLS estimate of the
distance elasticity about 3 %. This provides evidence that conventional estimates of the distance
elasticity could be heavily biased downwards and spuriously underestimate the role transportation
costs play in regional price dispersions and LOP violations.

The organization of the rest of this paper is as follows. In the next section, we introduce
our model and derive our FIML estimator based on the corresponding sample-selection model in
Section 3. In Section 4, we conduct Monte Carlo experiments to check the validity of the FIML
estimator. Section 5 describes our data set. After reporting the empirical results in Section 6, we
conclude.

2. A simple model of cross-regional product delivery

The empirical analysis of this paper is based on the model of monopolistic competitive firms
as in Melitz (2003) and Helpman et al. (2008). In this model, a country consists of I distinct regions
indexed by i = 1, 2, · · · , I. In each region i, the representative household consumes a continuum
of agricultural products indexed by l, which takes a value between the closed unit interval, i.e.,
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l ∈ [0, 1]. We assume that the representative household in each region can buy an identical set of
agricultural products at the regional wholesale market and raise its utility with the Dixit-Stigliz
type constant elastic function

ui =

[∫ 1

0
xi(l)

αdl

]1/α

, 0 < α < 1,

where xi(l) is the consumption (index) of product l in region i. This utility function implies that
the elasticity of substitution across products is ε = 1/(1−α) > 1, which is assumed to be common
across all regions. The resulting region i’s demand function for product l under the corresponding
average price pi(l) is

xi(l) =

[
pi(l)

pi

]−ε

xi, (1)

where pi represents the the consumer price index (CPI) aggregated over products in region i

pi =

[∫ 1

0
pi(l)

1−εdl

]1/(1−ε)

, (2)

and xi ≡ ui indicates the indirect utility represented as the aggregate consumption level of fruits
and vegetables in the corresponding region i.

We assume that each product l can be produced in all regions with an identical production
technology discussed below. Producing region j of product l, then, delivers its product to the
wholesale markets in the same region j as well as distinct consuming regions i �= j only if the
delivery is profitable. Let xi(j, l) denote the demand of region i for product l produced in and
delivered from region j. Then, the representative household in region i earns its utility from
consuming product l with the following constant elastic function

xi(l) =

[∫
j∈Bi(l)

{δi(j, l)xi(j, l)}
αdj

]1/α

, 0 < α < 1,

where Bi(l) is the set of the producing regions that deliver product l to region i. This utility function
specific to product l implies that the representative household in region i recognizes products
indexed by l that are produced in distinct regions differently. Moreover, term δi(j, l) reflects the
representative household’s biased preference on different producing regions: the greater the term
δi(j, l) is, the more the household in region i prefers product l produced in region j relative to those
produced in other regions, ceteris paribus. The above CES utility function then implies region i’s
demand function for product l produced in region j under the price pi(j, l)

xi(j, l) =

[
pi(j, l)

pi(l)

]−ε

δi(j, l)
ε−1xi(l), (3)

where pi(l) is the the aggregate price index of product l in region i

pi(l) =

[∫
j∈Bi(l)

{δi(j, l)pi(j, l)}
1−εdj

]1/(1−ε)

. (4)
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As specified by Helpman et al. (2008), a producer in region j produces a unit of an agri-
cultural product with costs minimizing a bundle of factor inputs. The marginal cost of producing
product l is denoted by cja(l), where a(l) measures the number of bundles of factor inputs used per
unit output of product l and cj measures the cost of this bundle of factor inputs. Notice that a(l)
is product-specific, while cj is region-specific. This means that the efficient combination of inputs
for producing an identical product is common across regions, while factor input costs are different
across regions.

If a producer yielding product l in region j sells its product within the same region, the
delivery cost of its product to the wholesale market is cja(l). That is to say, a producer of a region
does not need to bear any transportation costs when selling its product at the wholesale market in
the same region. On the other hand, if the same producer seeks to sell its product at the wholesale
market in region i �= j, two types of delivery costs should be borne by the producer: a fixed cost
of serving at the market in region i, denoted by cjfij, and an “iceberg”-type transportation cost,
denoted by τij. As in Helpman et al. (2008), we assume that fjj = 0 for any j and fij > 0 for
i �= j, and τjj = 1 for any j and τij > 1 for i �= j.5

A producer in region j is a monopolistically competitive producer at the wholesale markets
in the same region as well as the other regions to deliver. At the wholesale market in region j, the
producer of product l, who faces the demand function (3), maximizes profits by charging markup
price pj(j, l) = cja(l)/α. If the same producer sells at the wholesale market in region i �= j, the
optimal price to set, pi(j, l), is

pi(j, l) = τij
cja(l)

α
. (5)

In this case, the operating profits of delivering product l to region i is

πij(l) = (1− α)

[
τijcja(l)

α

]1−ε

δi(j, l)
ε−1pi(l)

εxi(l)− cjfij,

= (1− α)

[
τijcj

αpi

]1−ε

θi(j, l)
1−εpixi − cjfij,

where θi(j, l) is the ratio of the productivity level to the producing regional bias a(l)/δi(j, l). If
a producer in region j sells its product l at its regional wholesale market, its monopolistic profit
πjj(l) is positive because fjj = 0 and τjj = 1. However, delivering the same product to region i
is profitable only if θi(j, l) is smaller than a threshold θ̄ij, where θ̄ij is defined by the zero profit
condition πij(l) = 0, or equivalently

(1− α)

[
τijcj

αpi

]1−ε

θ̄1−ε
ij pixi = cjfij. (6)

Let Tij(l) = 1 denote a positive delivery of product l from region j to region i, and Tij(l) = 0
denote the zero delivery of product l from region j to region i. The above determination of the

5If we allow for a fixed cost of production, i.e., fjj > 0, a producer in region j decides whether to produce product
l or not depending on the corresponding zero profit condition. Appendix A, however, discusses that the sample
selection due to this extensive margin of production does not result in a biased estimate of transportation costs
because the decision of production of a product is independent of the transportation cost of delivering the product
to other regions. We, therefore, ignore the extensive margin of production in the rest of our exercise below.

5



threshold (6), then, implies

Tij(l) =

{
1 if θi(j, l) < θ̄ij,

0 otherwise.
(7)

Therefore, equations (6) and (7) describe the selection mechanism of the delivery of product l
produced in region j to the wholesale market in region i profitably.

Optimal price (5) implies that price differentials of an identical product between regions
that are producing and consuming the product provides a precise identification of transportation
cost τij . To see this, let qij(l) denote the log of the price differential of product l between producing
and consuming regions j and i: qij(l) ≡ ln pi(j, l)− ln pj(j, l). Then, optimal price (5) and selection
mechanism (7) together yield the price differential equation

qij(l) = ln τij, only if Tij(l) = 1. (8)

Price differential equation (8) has two important empirical implications. First, transportation
cost τij can be measured from the corresponding price differential only when we can identify the
prices in the producing and consuming regions. This is exactly the argument of Anderson and
van Wincoop (2004) against the conventional approach to measuring transportation costs in the
literature of regional and cross-country price dispersions.6 The second implication, however, says
that identifying producing and consuming regions is not enough for estimating transportation costs
precisely. Equation (8) shows that there is an incidental truncation or sample section: we can
observe the price differential of product l between producing and consuming regions only when the
product is indeed delivered from the former region to the latter. Hence, the sample is non-randomly
selected by the selection mechanism of (6) and (7). This selection mechanism indeed depends on
transportation cost τij. Therefore, transportation cost τij in equation (8) could be inconsistently
estimated unless we can take into account this sample-selection mechanism.

3. Empirical framework of identifying distance elasticity

In this section, we discuss the empirical framework for estimating transportation cost τij

that is identified by the model the last section describes. Following Helpman et al.(2008), we specify
transportation cost τij parametrically with Dγ

ij exp(μ + uij) where Dij represents the symmetric

distance between regions i and j, and uij ∼ N(0, σ2
u) is an i.i.d. unobserved region-pair specific

element of the transportation cost. Positive constant μ > 0 makes it possible that the transportation
cost always takes a value greater than 1 for all (i, j) pairs. The price differential (8), then, is

qij(l) = μ + γdij + uij , only if Tij(l) = 1. (9)

The discrete choice of product l to be delivered from region j to region i is determined by threshold
θ̄ij that is defined by zero profit condition (6). Let latent variable Zij(l) denote

Zij(l) =
(1 − α)

[
τijcj

αpi

]1−ε
θi(j, l)

1−εpixi

cjfij
.

6Inanc and Zachariadis (2009) follow this argument of Anderson and van Wincoop (2004) and estimate trans-
portation costs identifying producing countries in several indirect ways.
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Product l, then, is delivered from region j to region i only if Zij(l) > 1. We assume that the fixed
cost of delivery, fij, is stochastic due to an i.i.d. unobserved element vij . Just as in Helpman et al.
(2008), we exploit a parametric specification of fij: fij ≡ exp(λj+λi−vij), where vij ∼ i.i.d.N(0, σ2

v )
and is uncorrelated with uij . The log of the latent variable Zij(l), zij(l) ≡ ln Zij(l), is

zij(l) = β − (ε− 1)γdij + ε ln pi + ln xi + ξj + λi + ωl − �ijl + ηij, (10)

where β ≡ ln(1−α)+(ε−1) ln α+(1−ε)μ, ξj ≡ −ε ln cj−λj, ωl ≡ (1−ε) ln a(l), �ijl ≡ (1−ε) ln δi(j, l),
and ηij ≡ (1 − ε)uij + vij ∼ i.i.d.N(0, (1 − ε)2σ2

u + σ2
v). Selection equation (10) then implies that

Tij(l) = 1 only if zij(l) > 0.

Price differential equation (9) and selection equation (10) jointly reveal two critical aspects
when identifying the distance elasticity of transportation costs, γ. First, estimating the distance
elasticity of transportation costs only respecting price differential equation (9) might lead to an
under-biased inference. To see this, taking the conditional expectation of price differential equation
(9) on the observations and Tij(l) = 1 yields

E[qij(l)|., Tij(l) = 1] = μ + γdij + E[uij |., Tij(l) = 1],

where . represents other observable. Notice that E[uij |., Tij(l) = 1] is related to the conditional
expectation η̄ij ≡ E[ηij |., Tij(l) = 1] by E[uij |., Tij(l) = 1] = corr(uij , ηij)

σu

ση
η̄ij , where corr(uij , ηij)

is the correlation coefficient between uij and ηij and ση = (1 − ε)2σ2
u + σ2

v . A consistent estimate
of η̄ij is obtained with the inverse Mills ratio ˆ̄ηij(l) = φ[ẑij(l)]/Φ[ẑij(l)], where φ(.) and Φ(.) are
the standard normal density and cumulative distribution, respectively.7 Therefore, we can rewrite
price differential equation (9) as

qij(l) = μ + γdij + βuη ˆ̄ηij(l) + eij(l), (11)

where βuη = corr(uij , ηij)
σu

ση
, and eij(l) is an i.i.d. error term satisfying E[eij(l)|., Tij(l) = 1] = 0.

Now, our model implies that given ε > 1, the error term in the selection equation, ηij, could be
correlated negatively with that in the price differential equation, uij : corr(uij , ηij) < 0.8 Moreover,
the inverse Mills ratio ˆ̄ηij(l) is increasing in distance because ˆ̄ηij(l) is a decreasing function of the
predicted latent variable ẑij(l) that then depends negatively on distance through selection equation
(10). Hence if we ignore the second term of the RHS of the above equation (11) when estimating
distance elasticity γ only through the price differential equation, the resulting estimate could be
biased downwards.

Second, the size of the under-bias depends crucially on the price elasticity of demand, ε,
This is because, given an unobserved transportation cost uij and the resulting price set in the

7This is because

η̄ij(l) = E[ηij |., Tij(l) = 1],

= E[ηij |., zij(l) > 0],

= E[ηij |., ηij > −ẑij(l)],

=
φ[ẑij(l)]

Φ[ẑij(l)]
.

8Because ηij = (1− ε)uij + vij and uij and vij are orthogonal, corr(ηij , uij) = (1−ε)σu√
(1−ε)2σ2

u+σ2
v

< 0, given ε > 1.
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consuming region, selection equation (10) implies that a larger price elasticity leads to a smaller
demand for the corresponding product sold in the consuming regional wholesale market and, as
a result, lesser profitability of the delivery of the product from the producing to the consuming
regions. Therefore, the under-bias due to the sample selection becomes worse with a larger price
elasticity of demand. Moreover, the effect of distance on the delivery choice depends on the distance
elasticity of transportation costs as well as the price elasticity of demand in a consuming region
in a nonlinear way. This is because given the two elasticities, longer distance of delivery raises
the price in the consumer region, reduces its demand for the product, and, as a result, depresses
the profitability of delivery from the producing region. The sensitivity of the choice of delivery to
distance is then nonlinearly associated with the two elasticities: the higher the distance elasticity of
transportation costs is, the smaller the chance of delivery is; similarly, the higher the price elasticity
of demand is, the smaller the chance of delivery is.

The above empirical implications of our model require that to identify the distance elasticity
correctly, we jointly estimate the distance elasticity of transportation costs and the price elasticity
of demand within a sample-selection model that consist of equations (9) and (10). For this pur-
pose, we conduct a full information maximum likelihood (FIML) estimation of a sample-selection
model on which we impose nonlinear constraints, conditional on the observations of the delivery
index {Tij(l)}, the price differential {qij(l)}Tij (l)=1, the log of distance {dij}, the average price of
product l in consuming regions {pi(l)}, and the aggregate transaction of agricultural products in
consuming regions {xi}.

9 To implement the FIML procedure, we normalize the selection equation
(10) by setting the standard deviation of its error term ηij, ση, equal to 1.10 The normality of the
distributions of the two error terms uij and vij , then, provides the following log likelihood

∑
i,j

(1− Tij(l)) ln [Φ (−β + (ε− 1)γdij − ε ln pi − ln xi − bij)]

+
∑
i,j

Tij(l) ln

[
Φ

(
β − (ε− 1)γdij + ε ln pi + ln xi + bij + ρσ−1

u (qij(l)− μ− γdij)

(1− ρ2)
1
2

)]

+
∑
i,j

Tij(l) ln

[
φ

(
qij(l)− μ− γdij

σu

)]
−
∑
i,j

Tij(l) ln σu, (12)

where Φ(.) is the standard normal cumulative distribution; φ(.) is the standard normal density;
constant bij controls for regional fixed effects in selection equation (10); ρ is the correlation coeffi-
cient between uij and ηij : ρ = (1 − ε)σu. Maximizing the log likelihood function with respect to
the parameters γ, ε, b, μ, and ρ provides the corresponding FIML estimates.

4. Monte Carlo experiments with a linear economy

In this section, we conduct Monte Carlo experiments based on our model in Section 3 to
understand the following two questions: (i) what bias the conventional regression exercise without

9We also include into our FIML estimation monthly dummies to control for seasonality and fixed effects for any
unobservable producing and consuming regional effects.

10This standard normalization in a sample-selection model makes the correlation between uij and ηij equal to
(1− ε)σu. During estimation, we further impose a restriction that the correlation coefficient (1− ε)σu is always less
than or equal to 1 in the absolute value.
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identifying producing and consumption regions and ignoring the sample-selection mechanism intro-
duces into an estimate of transportation cost γ, and (ii) how well our FIML estimator can correct
the bias.

Consider an economy that is geographically separated into 47 regions. The 47 regions are
indexed by integers between 1 and 47, respectively.11 We assume that the distance between regions
i and j, Dij , is equal to 100|i − j| with the minimum distance of 100 and the maximum of 4600.
In each region, a product l is produced with productivity level a(l) equal to 1 that is common
across the regions. We assume that the shape of the demand function is common across the regions
and characterized by the parameter α equal to 0.75. This calibration of α means that the price
elasticity of demand ε = 1/(1 − α) is 4.00 and the wholesale price is 33.33 % marked up over the
corresponding marginal cost. All the producing regions share the same factor cost cj of 0.55. Each
region is also characterized by the aggregate price and the aggregate real expenditure pi and xi,
respectively, both of which we set to 20.00. For simplicity, we ignore the cross-regional variations
in the productivity-regional bias ratio θi(j, l) by setting δi(j, l) = 1 for all pairs of regions i and
j. The fixed cost fij = exp(λi + λj − vij) is specified as follows. We calibrate the sum of the
producing and consuming regional fixed effects, λi + λj , so that, when the distance elasticity is
zero, the probability of delivery of a product from a producing region to a consuming region is
always equal to 0.50. The resulting fixed effect term λi +λj is (1−α)αε−1c−ε

j pε
ixi for all (i, j) pairs.

The Gaussian random component in the fixed cost, vij , has the standard deviation of σv = 0.30.
We set the constant term of the transportation cost μ to 1.50 and allow for idiosyncratic random
variations in the transportation cost setting the standard deviations of the random component of
the transportation cost, σu, to 0.30

In our Monte Carlo experiment, we first draw 1000 sets of Gaussian random variables uij

and vij independently from their distributions. We then calculate price differential qij(l) and latent
variable zij(l) following equations (9) and (10) under one of the two hypothesized values of the
distance elasticity of transportation costs, γ = 0.00, 0.15, or 0.50. In each Monte Carlo draw
with each true value of the distance elasticity, we then implement four different estimations of the
distance elasticity. The first one is the simple OLS regression of price differential qij(l) on the log
of the distance ln dij using the whole synthetic samples regardless of Tij = 0 or 1. By construction,
this OLS estimator, denoted by γ̂whole, is consistent and, hence, should be distributed around the
hypothesized true distance elasticity. The second one is the OLS regression of the price differential
qij(l) on the log of the distance ln dij using only the samples that are selected with Tij(l) = 1. This
second OLS estimator, denoted by γ̂OLS, suffers from a sample-selection bias. Therefore, we expect
to observe that the distribution of γ̂OLS is biased against the true value of γ. The third estimation
is with the FIML estimator we introduce in Section 3. This estimator, denoted by γ̂FIML, should
correct potential bias due to sample selection as long as the underlying maintained assumptions
are met in our Monte Carlo experiment. Finally, to explain the fourth estimator, consider the price
differential between two consuming regions without identifying producing and consuming regions,
i.e., p̃i(l) − p̃k(l) for any two consuming regions i and k, where p̃i(l) denotes the sampled price of
product l at consuming region i. The OLS estimator of the distance elasticity that is conventional
in the literature of the absolute LOP, which is denoted by γ̂conv, then is constructed by regressing
the absolute value of the price differential between consuming regions i and k, |p̃i(l)− p̃k(l)|, on the

11This assumption of the linear economy might be the most relevant for an island country of a long-narrow arc
shape like Japan that consists of 47 prefectures.
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log of the corresponding distance ln dik.
12 Comparing the distribution of γ̂conv with that of γ̂whole,

we can understand the degree of bias the conventional regression exercise suffers from about the
inference of the distance elasticity of transportation costs.

We first observe how the distance elasticity affects the choice of delivery. The left, middle,
and right windows of Figure 1 depict the contour plots of probabilities of delivery from producing
regions to consumption regions that are calculated out of 1000 Monte Carlo draws for the cases
of γ = 0.50, 0.15, and 0.00, respectively. In each window, the contour lines represent sets of
the producing and consuming regions that have an identical delivery probability from the former
regions to the latter. The left window shows that with the large distance elasticity of γ = 0.50,
product delivery is profitable only locally. This is obvious from the fact that all contour lines are
parallel to the 45 degree line and equiprobability bands, which are constructed by two contour
lines with the same probability, are very narrow and always include the 45 degree line. This shape
of the contour plot implies that product delivery occurs only to consuming regions very close to
producing regions. The middle window then exhibits that the equiprobability bands become much
wider with the smaller distance elasticity of γ = 0.15. In this sense, a larger distance elasticity
creates geographical clustering of products from different originated regions. This is clearer if we
set the distance elasticity to zero. As displayed in the right window, the equiprobability line with
the delivery probability of 0.50 are distributed over the whole window. This means that product
delivery occurs with the 50 % chance even between the producing and consuming regions that are
farthest apart each other.

Figure 2 depicts price differentials simulated from the model. The first, second, third rows
of the figure correspond to the cases with γ = 0.50, 0.15, and 0.00, respectively. In each case, the
first column reports samples that are selected by delivery choice Tij = 1, while the second column
plots the whole samples regardless of delivery choice Tij = 0, or 1. The two windows in the first row
reveal severe sample truncation under the large distance elasticity of γ = 0.50. Although the whole
samples of the simulated price differentials are distributed all over the range of the log of distance
and have a clear positive association with the log of distance, the underlying delivery selection
mechanism is so strong that the observed samples are concentrated only on local areas with short
range transportation. The association of the observed price differentials with the log of distance
then becomes vague. The second and third rows prove that this sample selection turns out to be
weaker when the distance elasticity becomes smaller to 0.15 and 0.00.

Figure 3 reports non-parametrically smoothed densities of the four different estimators of
the distance elasticity with the Epanechnikov kernel. The first row corresponds to the case with the
hypothetical value of the distance elasticity γ = 0.50; the second the case with γ = 0.15; and the
third the case with γ = 0.00. The first column plots smoothed densities of the OLS estimate with the
whole sample, γ̂whole; the second the OLS estimate with the truncated sample, γ̂OLS; the third the
FIML, γ̂FIML; and the fourth the estimate of the conventional regression, γ̂conv. The three windows
in the first column show that the OLS estimator with the whole sample, γ̂whole, is consistent and
distributed around the underlying true value. The three windows in the second column, however,

12For each Monte Carlo draw, the price of product l that would be sampled at consuming region i, p̃i(l), is
constructed as follows. For each consuming region i, we obtain the set of the truncated prices that are delivered from
producing regions Si(l) = {pi(j, l)|j ∈ Bi(l)}. This set Si(l) includes the prices of product l that would be sampled
as the representative price at consuming region i, pi(l). We uniformly draw 100 prices from this set Si(l) and take
the average over them to construct p̃i(l).

10



uncover that the OLS estimator with the truncated sample, γ̂OLS, is subject to severe downwards
bias. On the one hand, as displayed in the first and second rows in the second column, this estimator
γ̂OLS is distributed far left from the corresponding true value when the true distance elasticity is
either 0.50 or 0.15. On the other hand, as shown in the third row of the second column, if the
true distance elasticity is zero, the OLS estimator with the truncated sample is consistent and
distributed around the true value of γ = 0.00. Therefore, the positive distance elasticity generates
the sample truncation that causes the OLS estimates to be biased downwards. The three windows
in the third column reports the smoothed densities of the FIML estimator for the three true values
of the distance elasticity. These windows clearly reveal that the FIML estimator is consistent and
distributed around the underlying true value. Finally, the three windows in the fourth column
plot the smoothed densities of the OLS estimator of the conventional regression, γ̂conv. The most
outstanding fact from these windows is that the conventional estimator performs the worst. In
the first and second rows for the cases of γ = 0.50 and 0.15, the conventional estimator γ̂conv is
distributed with the means of 0.019 and 0.003, respectively, and even far left from the corresponding
distributions of the OLS estimator γ̂OLS. This clearly shows us that the conventional regression
exercise without identifying producing regions indeed suffers from the worst under-bias toward the
inference on the distance elasticity of transportation costs among all the other estimators.

The Monte Carlo experiment of this section, therefore, confirms the necessity of identifying
producing and consuming regions and taking into account the sample-selection mechanism for
drawing a correct inference on the distance elasticity of transportation costs. The FIML estimator
can correctly identify the true values of the distance elasticity with synthetic data generated from
our structural model.

5. Data and descriptive statistics

In this paper, we investigate a unique daily data set of the wholesale prices of agricultural
products in Japan: the Daily Wholesale Market Information of Fresh Vegetables and Fruits (“Seik-

abutsu Hinmokubetsu Shikyo Joho”).13 Appendix provides the detailed description of the data set.
All contents in the data set are surveyed by the Ministry of Agriculture, Forestry, and Fishery for
almost all transactions at 55 wholesale markets officially opened and operated in the 47 prefectures
in Japan on a daily basis. This daily market survey covers the wholesale prices of 120 different
vegetables and fruits that are actually traded in the 55 wholesale markets. Each agricultural fresh
product is further categorized by different varieties, sizes, grades, as well as producing prefectures.
Hence, for example, the data set reports the wholesale prices at 6 different wholesale markets of
“Dansyaku (Irish Cobbler equivalent)” variety of potato of size “L” with grade “Syu (excellent)”
produced in “Hokkaido” prefecture on September 7, 2007. This high degree of categorization is
ideal for our purpose of approaching the absolute LOP rigorously and inferring transportation costs
precisely because the law requires to identify identical goods as its theoretical premise at the first
place, as Broda and Weinstein (2009) seek in their barcode data. This daily market survey has
been recorded since 1976. In this paper, however, we select the 2007 survey in which there are
reported market transactions on 274 market opening days.14

13The data set is distributed by the Center of Fresh Food Market Information Service (“Zenkoku Seisen Syokuryohin

Ryutsu Joho Senta”) with the URL: http://www2s.biglobe.ne.jp/ fains/index.html.
14The choice of 2007 is arbitrary. We are extending our exercise to other years.
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Price differential qij(l) is constructed by subtracting the wholesale price in the producing
prefecture, pj(j, l), from that in the consuming prefecture, pi(j, l). By construction, qjj(l) = 0
for any producing prefecture j.15 We assign the value of 1 to delivery index Tij(l) for any (i, j)
combination with observed qij(l).

16 The geographical distance between prefectural combination
(i, j) is approximated by that between the corresponding prefectural head offices in the prefectural
capital cities. The data of distance is provided by the Geographical Survey Institute (GSI) of the
Government of Japan. Taking the logarithm of the geographical distance yields variable dij .

17 We
cannot obtain daily data of the aggregate price over all agricultural products implied by selection
equation (10), pi. Variable pi, hence, is proxied by the monthly data of the retail price of the
corresponding vegetable that is reported in the Retail Price Survey (“Kouri Bukka Tokei Cyosa”)
the Ministry of Internal Affairs and Communication conducts. Selection equation (10) also implies
the aggregate consumption level over all agricultural products in consuming region i, xi, as a factor
determining whether to delivery. To construct data for variable xi, we take the sum of daily volumes
of 24 different vegetables traded at the wholesale market of consuming region i. Moreover, to control
for daily variations in producing and consuming prefectures, we include into selection equation (10)
daily temperature data in both of the two prefectures that are reported by the Japan Meteorological
Agency.18 This inclusion of the regional temperatures as determinants of delivery comes from our
prior belief that the temperatures in producing and consuming regions are important factors for
productions of and demands for agricultural products.

We focus our exercise on selected vegetables: cabbage, carrot, Chinese cabbage (c-cabbage,
hereafter), lettuce, shiitake-mushroom (s-mushroom, hereafter), spinach, potato, and welsh onion.
Table 1 summarizes several descriptive statistics for these vegetables observed in the 2007 survey.
The table shows that each vegetable is highly categorized by product variety, sizes, and grades. In
this paper, we consider products having different source regions as different products even when
they are of the same product category. The number of distinct product entries, then, is quite large;
1,207 for cabbage; 1,186 for carrot; 1,001 for c-cabbage; 903 for lettuce; 1,423 for potato; 909 for
s-mushroom; 551 for spinach; and 1,115 for welsh onion, respectively.

For each product entry l, we count the numbers of delivery Tij(l) = 1 and non-delivery
Tij = 0 only for the dates on which the product entry l is indeed traded at the wholesale market
in the producing prefecture j. The seventh row of the table reports that the total number of both
delivery and non-delivery cases all over the product entries is beyond two hundred thousands for
each vegetable. This is the number of observations for our FIML estimation. Out of the total
number of delivery and non-delivery cases, the number of delivery cases is relatively small, as
exhibited in the eighth row of the table: it is around ten thousands for each vegetable. The seventh
and eighth rows of the table, therefore, imply that product delivery from a producing prefecture to
consuming prefectures is quite limited. More informatively, the ninth row shows that the average
distance from producing regions to consuming regions over all delivery and non-delivery cases

15For some products, we cannot find the wholesale price in the producing prefecture, pj(j, l), although we can
observe those prices in the consuming prefectures, pi(j, l). In this case, because we cannot construct the price
differential between producing and consuming prefectures, we drop these products from our investigation.

16We also assign the value of 1 to Tjj(l) whenever we can observe the wholesale price in the producing prefecture
pj(j, l). We consider this case that the corresponding product l is delivered from the producer to the wholesale market
in the producing prefecture. We attach the minimum distance of 10km to these samples with Tjj(l) = 1 to avoid
taking the logarithm of zero distance.

17The data is publicly available in the GSI website, http://www.gsi.go.jp/KOKUJYOHO/kenchokan.html.
18We download daily temperature data from the website: http://www.data.jma.go.jp/obd/stats/etrn/index.php.
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Tij = 1 or 0 is almost the same across the vegetables and about 6.00 in the logarithmic term (or
403.428 km). The tenth row, on the other hand, conveys that the average distance over all delivery
cases is much shorter depending on the vegetables with the minimum number of 2.69 (14.77km)
for s-mushroom and the maximum of 4.35 (77.55km) for potato.19 The critical aspect of our data
set the ninth and tenth rows uncover, hence, is the fact that product delivery is localized and
concentrated around the corresponding producing prefecture.

Figure 4 also confirms graphically the locality of product delivery. Each window of the
figure depicts as a contour plot the frequencies of product delivery from producing prefectures to
consuming prefectures that are calculated over all product entries on all traded dates. The hori-
zontal axis represents producing prefectures and the vertical axis consuming prefectures. The order
of prefectures reflects the geographical positions of the prefectures from the most north prefecture,
Hokkaido, to the most south one, Okinawa. Therefore, two prefectures that are indexed by close
integers are indeed geographically close to each other. Then, the brighter the blue contour line is,
the higher the probability of product delivery is. Hence, we can expect that contour lines should be
concentrated on the 45 degree line if product delivery is completely localized around the producing
prefectures. We observe the following three things in the figure. First, each vegetable has several
dominant producing prefectures that have vertically concentrated contour lines. This means that
these main producing prefectures deliver their products to not only nearby prefectures but also
other remote prefectures. Second, however, the frequencies of product delivery of the main produc-
ing prefectures are decreasing in distance. Even dominant producers do not deliver their products
to consuming prefectures farthest away.20 Third, the contour lines for other minor producing pre-
fectures are concentrated on the 45 degree line. The product delivery of these relatively minor
producing prefectures, thus, is highly localized.

The locality of product delivery that Table 1 and Figure 4 unmask together brings us two
important implications. First, as observed by Broda and Weinstein (2008) in their barcode data of
retail products, agricultural products in our data set are segmented and clustered geographically.
Even in the same vegetable category, products that are sold in two distinct regions far away one
another come from distinct producing origins and the corresponding prices might be affected by
idiosyncratic regional factors of producing regions. Variations in price differentials across consuming
regions that are generated by these idiosyncratic factors of distinct origins cannot be attributed to
transportation costs. Hence, given the observed high degree of regional product clustering, it is
crucial to scrutinize regional price differentials of a product that shares the same product origin in
order to infer the role transportation costs play in the absolute LOP deviation. Second, drawing
an inference on transportation costs only from observed price differentials might be subject to a
serious sample-selection bias, as we repeatedly claim in this paper.

The averages of the observed log price differentials are reported on the first row of the lower
panel of Table 1. The positive numbers of the row imply that prices in consuming prefectures
are on average higher by between 0.3 % and 8.1 % than those of the producing prefectures. This
observation of higher prices in final destinations than those in the origins are suggestive for an
important role of transportation costs in price differentials, as predicted by equation (9). The

19This short average distance of delivery reflects the fact that products are almost always delivered to the wholesale
markets of their producing prefectures. In this case of Tjj(l) = 1, as noted by footnote 14, we assign the minimum
distance of 10.00km to the observations.

20Exception is observed in producing prefecture 1, Hokkaido, in the cases of carrot and potato.
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corresponding standard deviations of the observed price differentials, which are displayed on the
second row of the lower panel, are quite large and around 20 %. This observed degree of regional
price dispersions is quite common in the literature of the LOP (e.g., Crucini et al. 2005, and Broda
and Weinstein 2008). Our data set of wholesale prices of agricultural products shows the almost
same degree of the LOP violation as observed in these past studies, even after we identify products
that share the same producing regions. We also conduct an OLS regression of the observed price
differentials on the corresponding log distances and constant for each vegetable. The resulting OLS
estimates of the coefficient on the log distance, γ̂OLS, are shown in the third row of the lower panel
of Table 1, which are accompanied by the corresponding standard errors. All the estimates are
positive and statistically significant with values between the minimum of 0.007 and the maximum
of 0.051. This range of the estimated distance elasticity of price differential is consistent with the
estimates observed in the past studies using different data sets such as Engel et al. (2005), Broda
and Weinstein (2008), and Inanc and Zachariadis (2009).

What is striking in the lower panel of Table 1 is that our price differential data of agricultural
products are characterized by many important data aspects that are frequently emphasized by the
past studies of the LOP using their distinct micro-level data of retail prices. This fact implies that
the inference of the distance elasticity of transportation costs by estimating the sample-selection
model by FIML does not necessarily result from data characteristics of regional price differentials of
particular agricultural products. In the next section, we report the results of the FIML estimation
of our sample-selection model.

6. Results

Table 2 summarizes the results of the FIML estimation of the sample-selection model. The
first row of the table shows that the elasticity of transportation costs with respect to distance,
γ̂FIML, is estimated positive and statistically significant for each vegetable. The outstanding fact
this row tells us is the large size of all the FIML estimates: the average (over the eight vegetables) of
the estimated distance elasticities is 0.399 with the minimum of 0.301 for cabbage and the maximum
of 0.522 for shiitake mushroom. According to price differential equation (9), the price differential
of a product between consuming and producing regions rises by about 40 % in response to the 100
% stretch in delivery distance when we ignore selection mechanism (10). Given the small size of
the OLS estimates of the distance elasticities for the eight vegetables, which are reported between
0.7 % and 5.1% in Table 2, this large size of the FIML estimates implies that the OLS estimates
are biased downwards seriously due to the underlying data truncation.

As discussed in section 3, the strength of the observed under bias tightly connects with
the price elasticity of demand, ε. As reported in the second row, the elasticity of demand with
respect to price, ε, is estimated both precisely and sensibly: the average of the estimated values of
the price elasticity of demand is 3.744 over the eight vegetables. Therefore, the demand for each
vegetable in consuming prefectures is reasonably responsive to a change in the wholesale price of the
product. Combining with the large estimate of the distance elasticity of transportation costs, the
estimated price elasticity of demand implies that the probability of product delivery from producing
to consuming prefectures depends negatively as well as sensitively on delivery distance. Indeed,
the estimates of the correlation coefficient between the unobserved disturbances of price differential
equation (9) and selection equation (10), ρ, provide evidence that sample-selection bias does matter.
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As displayed in the third row of the table, the correlation coefficient is estimated negative with
high statistical significance for each vegetable: the average of the correlation coefficients over the
vegetables is -0.779 with the minimum of -0.543 for shiitake mushroom and the maximum of -
0.866 for carrot. This highly negative correlation between the unobserved disturbances in the two
equations is the fundamental source for the under bias in the OLS estimate of the distance elasticity
in the price differential equation, as shown in equation (11).

In summary, our FIML estimates of the sample-selection model reveal dual roles geograph-
ical distance plays in regional price differentials. Distance creates a large price gap between con-
suming and producing regions. At the same time, distance significantly affects choice of delivery
from the latter to the former regions. As a result, price differentials are not randomly sampled and,
especially, their observations are concentrated on local areas surrounding producing regions. This
concentration of the observations within relatively short distance conceals the actual size of the
underlying distance elasticity of transportation costs making the OLS estimate biased downwards.

Model validation through diagnosis checks

The above FIML estimates of the three structural parameters depend on the identification
provided by our structural sample-selection model. Therefore, the relevance of the estimates relies
on the empirical validity of our model. As model validations, we conduct diagnosis checks of our
model with respect to two important aspects of the actual data: the pattern of product delivery
and the association of price differential with delivery distance.

If our sample-selection model is reliable, it should match the pattern of product delivery,
Tij(l), that is actually observed in our data. To check the ability of our model to mimic the delivery
pattern in the data, we calculate the percent correctly predicted (PCPs) measures for Tij(l) = 0
or 1. To construct the PCPs, we calculate the predicted conditional probabilities of Tij = 0 and
Tij = 1 on the observable, P̂ (Tij = 0|.) and P̂ (Tij = 1|.), respectively.21 Then if P̂ (Tij = 0|.) > 0.5,
we predict Tij = 0. Similarly, if P̂ (Tij = 1|.) > 0.5, we predict Tij = 1. Then, the PCP for Tij(l) = 0
(or 1) is calculated as the percentage of the total number of the observations of Tij(l) = 0 (or 1)
that are accompanied by P̂ (Tij = 0|.) > 0.5 (or P̂ (Tij = 1|.) > 0.5). The PCP for either Tij(l) = 0
or 1 is simply derived as a weighted average of the two PCPs.

The results of the PCPs are summarized in the first, second, and third rows of the lower
panel of Table 2. As shown in the first row, our sample-selection model yields high PCPs around
0.99 for either Tij(l) = 0 or 1 for all the vegetables. This means that the model is fairly successful
in replicating the observed pattern of product delivery overall. In particular, as implied by the
PCPs reported in the second and third rows of the lower panel, the model’s ability to replicate no
delivery choice Tij(l) = 0 is better than that to replicate delivery choice Tij(l) = 1. On the one
hand, the high PCPs for no delivery choice around 0.99, which are reported in the second row of

21The conditional probabilities, P̂ (Tij = 0|.) and P̂ (Tij = 1|.), are calculated as

P̂ (Tij = 0|.) = Φ
(
−β̂ + (ε̂− 1)γ̂dij − ε̂ ln pi − ln xi − b̂ij

)
,

and

P̂ (Tij = 1|.) = Φ

(
β̂ − (ε̂− 1)γ̂dij + ε̂ ln pi + lnxi + b̂ij + ρ̂σ̂−1

u (qij(l)− μ̂− γ̂dij)

(1− ρ̂2)
1

2

)
,

respectively.
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the lower panel, suggest the model’s almost perfect predictive ability of no delivery choice. On
the other hand, the PCPs for delivery choice, which are reported in the third row, are lower with
the cross-vegetable average of 0.800. The model does a good job in predicting the delivery choice
Tij(l) = 1 especially for some vegetables such as s-mushroom, spinach, and welsh onion.22 We
confirm through this diagnosis criterion that our model’s predictive performance for the pattern of
product delivery is remarkable.

The second diagnosis criterion is data association of price differential with distance. As
observed in Table 1, the OLS regression of the observed price differential on delivery distance
yields the estimate of the distance elasticity γ̂OLS around 4 % on average. The question we ask
here is if our sample-selection model predicts this size of the OLS estimate or not.

To do this diagnosis check, we derive the prediction of the estimated model on price differen-
tial following equation (11). Each window of Figure 5 plots the resulting predicted price differentials
(blue dots) as well as their data counterparts (gray crosses) against the corresponding log distances
for each vegetable. Observe that in each window the blue dots are distributed inside the cloud made
of the gray crosses. This means that our model successfully predicts the data association of price
differential with distance for each vegetable, although the actual data show us a much sparse joint
distribution between price differential and distance. The fourth row of the lower panel of Table 2
reports the OLS estimate γ̂OLS of regressing the predicted price differentials on the corresponding
distances. For comparison, we also repeat in the last row the OLS estimates with the actual data
that are reported in Table 1 too. The model’s predictions on the OLS estimates are close to but
slightly larger than their actual data counterparts: the cross-vegetable average of the predicted OLS
estimate is 0.078 whereas that with the actual data is 0.033. It is important, however, to remember
that the distance elasticity of transportation costs of our model is estimated 0.399 by FIML. What
is striking is that the sample-selection model with such a large distance elasticity of transportation
costs indeed mimics such a small size of the OLS estimate. In this sense, we conclude that our
model successfully passes the second diagnosis check, although we fully understand that there is
still an unexplained gap between the model’s prediction and the actual data with respect to the
observed joint distribution of price differential and distance. The question is then what our model
miss to fill this gap. We leave this important question as our future research task.

7. Conclusion

As claimed by Anderson and van Wincoop (2004) in their introduction, the “death of
distance” is indeed exaggerated even in regional price dispersions. In this paper, we try to revive
and rejuvenate transportation costs, which are measured by geographical distance, as a potential
source of absolute LOP violations. In so doing, we identify producing regions and take into account
sample selectivity due to the underlying choice of product delivery from producing to consuming
regions in our unique data of daily wholesale prices of agricultural products in Japan. After
estimating our structural sample-selection model by FIML using the data of price differentials and
delivery patterns, we find that the estimated distance elasticities of transportation costs are so large

22The main reason for the model’s slightly lower predictive performance for carrot and potato is simple. As
observed in Figure 4, the main producing prefecture of these two vegetables, Hokkaido, delivers its products to all
other prefecture regardless of delivery distance. This data aspect is hard to explain by our simple structural model.
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among vegetables that we can fill the reported huge gap between the two fields of international
economics — international finance and empirical trade — in terms of inferences on distance effects.

[Conclusion to be continued ]
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Appendix A. Does sample selection of production result in a biased estimate of γ?

Let Yj(l) denote the indicator function that takes the value of one if region j produces a fruit or
vegetable l and delivers the product to its wholesale market, and the value of zero otherwise. Notice that
when region j does not produce product l, we cannot observe the price differential qij(l), i.e.,

qij(l) = γdij + uij , only if Tij(l) = 1 and Yj(l) = 1.

Suppose that a farmer in region j has to pay a fixed cost fjj > 0 when they decide to produce a fruit or
vegetable. The profit of producing product l and delivering it to the regional wholesale market then is

πjj = (1− α)

(
cj

αpj

)1−ε

θj(j, l)
1−εyj − cjfjj ,

and the resulting zero profit condition is

(1− α)

(
cj

αpj

)1−ε

θ̃1−ε
j yj = cjfjj ,

where θ̃j is the threshold of no production. Now define a variable Wj(l) such as

Wj(l) =
(1− α)

(
cj

αpj

)1−ε

θj(j, l)
1−εyj

cjfjj

.

The threshold θ̃j means that region j produces product l only if Wj(l) > 1 or wj(l) ≡ ln Wj(l) > 0. As in
the case of fij , assume that the fixed cost fjj is stochastic: fjj = exp(λj − vj), where vj ∼ i.i.d.N(0, σ2

v)
and is uncorrelated with uij . The latent variable wj(l) then is

wj(l) = γ0 + (ε− 1) ln pj + ln yj + ξj + ωl − μjjl + vj .

This is the selection equation of the production of product l in region j. Ignoring this sample selection does
not result in a biased estimate of γ in the price differential equation. This is because vj is uncorrelated with
uij . Consider the conditional equation E[qij(l)|dij , Yj(l) = 1]:

E[qij(l)|dij , Yj(l) = 1] = E[γdij + uij |dij , Yj(l) = 1],

= γdij ,

because

E[uij |dij , Yj(l) = 1] = E[uij |dij , wj(l) > 0],

= E[uij |dij , pj , xj , · · · , vj ],

= 0.

This result means that we obtain an unbiased estimate of γ, selecting the samples with Yj(l) = 1 and
estimating the sample-selection model by the FIML procedure.

Appendix B. Data description

The data file contains information on name of product, market prices, name of production cite,
name of market place, and product characteristics. The price reported has three forms: the highest price,
the mode price, and the lowest price. Most markets record all three prices, but several markets report only
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the highest and the lowest prices or only the mode price. Thus, we construct our price variable by averaging
these price variables. We use the mode price when only the mode price is available. The transaction unit of
each product is also reported. To obtain same unit for each product, we divide the price by the number of
unit.

We need to control for product characteristics to examine prices between production cite and market
place. Thus, we construct same category product by using product characteristics and production cite. The
product characteristics are: brand name, size of products, and grade of products. The size is coded by
categorical variables, such as large, medium, and small. The grade is also measured by the categorical
variables, such as A, B or superior. For example, spinach is classified as grade A under the following
conditions: it is of one type and no mixture of types affects the appearance; it is clean, trimmed, and free
from decay and damages by insects (Source: Guideline document of Yamanashi prefecture). Otherwise, it is
ranked as B. Because prices depend on detailed characteristics, we take each combination of characteristics
to have the same product.

With respect to central markets, the coverage of vegetables traded through central wholesale markets
is substantial in Japan. While nowadays large supermarket chains can directly purchase agricultural products
from producers, the share of domestic products covered by central wholesale markets is more than 90 percent
in 2006. While there are growing imports of agricultural products, the overall share (not only domestic, but
also imported products) of vegetables traded is still 75 percent (Source: Ministry of Agriculture, Forestry, and
Fishery). Thus, our data enable us to capture not a particular channel of distribution cost, but representative
transportation costs.
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