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Abstract

This paper investigates the robustness of Dutta and Sen’s (2012) Theorem 1 to re-

ductions in the strategy space of individuals in relation to preference announcements.

Specifically, it considers the Saijo-type’s (1988) simplification of Maskin’s canonical

mechanism, according to which each individual’s strategy choice includes her own pref-

erence and those of her k ‘neighbor’ individuals. This paper refers to this type of

mechanisms as q-mechanisms where q = k + 1. A partially-honest individual is an

individual who strictly prefers to tell the truth whenever lying has no effect on her

material well-being. When there is at least one partially-honest participant, it offers a

necessary condition for Nash implementation by q-mechanisms, called partial-honesty

monotonicity, and shows that in an independent domain of preferences that condition

is equivalent to Maskin monotonicity. It also shows that the limitations imposed by

Maskin monotonicity can be circumvented by a q-mechanism provided that there are

at least n− q + 1 partially-honest participants.
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Introduction

The implementation problem is the problem of designing a mechanism or game form

with the property that for each profile of participants’preferences, the equilibrium outcomes

of the mechanism played with those preferences coincide with the recommendations that a

given social choice rule (SCR) would prescribe for that profile. If that mechanism design

exercise can be accomplished, the SCR is said to be implementable. The fundamental paper

on implementation in Nash equilibrium is thanks to Maskin (1999; circulated since 1977), who

proves that any SCR that can be Nash implemented satisfies a remarkably strong invariance

condition, now widely referred to as Maskin monotonicity. Moreover, he shows that when

the mechanism designer faces at least three individuals, a SCR is Nash implementable if it

is Maskin monotonic and satisfies the condition of no veto-power, subsequently, Maskin’s

theorem.

Maskin (1999) obtains his original result by means of a mechanism that requires each

individual to report, besides two auxiliary data, the whole description of the state. In

a preference model, this means that each participant is asked to report preferences that

members of the society have (preference profile). It is natural to explore the possibility of

simplifying the strategy space of the individuals. Saijo (1988) addressed this question. While

still retaining the generality of the implementation model, Saijo (1988) proves that when

monotonicity and no veto-power are satisfied, it is enough to arrange agents in a directed

circle and ask each of them to report, besides two auxiliary data, her own preference and that

of her successor in the circle. Nash implementation is actually equivalent to implementation

with these restricted mechanisms (Lombardi and Yoshihara, 2013).

Since Maskin’s theorem, economists have also been interested in understanding how to

circumvent the limitations imposed by Maskin monotonicity by exploring the possibilities

offered by approximate (as opposed to exact) implementation (Matsushima, 1988; Abreu

and Sen, 1991), as well as by implementation in refinements of Nash equilibrium (Moore and

Repullo, 1988; Abreu and Sen, 1990; Palfrey and Srivastava, 1991; Jackson, 1992) and by

repeated implementation (Kalai and Ledyard, 1998; Lee and Sabourian, 2011; Mezzetti and

Renou, 2012). One additional way around those limitations is offered by implementation

with partially-honest individuals.

A partially-honest individual is an individual who deceives the mechanism designer when

the truth poses some obstacle to her material well-being. Thus, she does not deceive when

the truth is equally effi cacious. Simply put, a partially-honest individual follows the maxim,

“Do not lie if you do not have to”to serve your material interest.

In a general environment, a seminal paper on Nash implementation problems involving

partially-honest individuals is Dutta and Sen (2012), whose Theorem 1 (p. 157) shows that

for implementation problems involving at least three individuals and in which there is at least
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one partially-honest individual, the Nash implementability is assured by no veto-power. Sim-

ilar positive results are uncovered in other environments by Matsushima (2008a,b), Kartik

and Tercieux (2012), Kartik et al. (2014), Lombardi and Yoshihara (2014), Saporiti (2014)

and Ortner (2015). Thus, there are far fewer limitations for Nash implementation when

there are partially-honest individuals.1

As in Maskin’s (1999) original result, Dutta and Sen’s (2012) Theorem 1 uses a mecha-

nism that asks participants to report, among two auxiliary data, the whole preference profile.

Moreover, according to Dutta and Sen’s (2012) definition of honesty, a participant’s play is

honest if she plays a strategy choice which is veracious in its preference profile announce-

ment component. The current paper bridges the gap between Theorem 1 of Dutta and Sen

and the literature on strategy space reduction by asking the following question: If we use

a mechanism that asks participants to report, among other auxiliary data, only part of the

whole preference profile, can this ‘simpler’communication scheme have a significant impact

on Nash implementation with partially-honest individuals?

To answer this question, the paper presents an implementation model which reduces

straightforwardly to a model with strategy space reduction. Specifically, the paper presents

a model in which each partially-honest individual cares about telling the truth about the

preferences of an idiosyncratic subset of individuals, which includes herself. We call this set

as individual honesty standard. One interpretation is that participant i concerns herself with

the truth-telling of preferences of individuals who are in her honesty standard when she plays

a strategy choice, and such a subset represents the individuals whose truthful information is

relevant to retain her self-image as an honest individual. Then, on the basis of this definition,

the paper looks at what SCR can be Nash implemented in a society involving partially-honest

individuals.

First, without any restriction on the available class of mechanisms, we show that any

SCR that can be Nash implemented with partially-honest individuals satisfies a variant of

Maskin monotonicity, called partial-honesty monotonicity. The idea of this axiom is quite

intuitive. If x is one of the outcomes selected by a given SCR at one preference profile but is

not selected when there is a monotonic change of preferences around x, then that monotonic

change has altered preferences of individuals in the honesty standard of a partially-honest

individual.

Second, we consider what we call non-connected honesty standards. Simply put, in-

dividual honesty standards are connected if some participant is in the honest standard of

1A pioneering work on the impact of decency constraints on Nash implementation problems is Corchón
and Herrero (2004). These authors propose restrictions on sets of strategies available to agents that depend
on the state of the world. They refer to these strategies as decent strategies and study Nash implementa-
tion problems in decent strategies. For a particular formulation of decent strategies, they are also able to
circumvent the limitations imposed by Maskin monotonicity.

2



every other participant. When that is not the case, we call them non-connected honesty

standards. In other words, they are non-connected if every participant is excluded from the

honesty standard of another participant.

In an independent domain of preferences, where the set of the profiles of participants’

preferences takes the structure of the Cartesian product of individual preferences, we show

that partial-honesty monotonicity is equivalent to Maskin monotonicity whenever there exists

at least one partially honest individual and all of such individuals share non-connected

honesty standards in the society. Thus, under those hypotheses, Maskin’s theorem provides

an almost complete characterization of SCRs that are Nash implementable in the society

with partially-honest individuals.

The above results is derived without imposing any restriction on the implementing

mechanism as well as on the basis that in every state a strategy choice of an individual is

truthful if it encodes information of individuals’preferences consistent with that state for

members of society in her honesty standard (Definition 1 below). This implies that if we

arrange agents in a directed circle and ask them to report their own preferences and those of

their successor(s) in the circle, and the honesty standard of every individual includes herself

and her successor(s), then this ‘simpler’mechanism would impair the ability of the mecha-

nism designer to escape the limitations imposed by Maskin monotonicity. Then, a natural

question that arises immediately is: Under what conditions would the positive suffi ciency

result of Dutta and Sen (2012) be restored? Our answer is that the mechanism designer who

knows that α(≥ 1) members of society have a taste for honesty can expect to do well if no

participant has a veto-power by structuring communication with participants in a way that

each of them reports her own preference and those of other n− α successors who are in the
honesty standard of her.

The remainder of the paper is divided into five sections. Section 2 presents the the-

oretical framework and outlines the implementation model, with the necessary condition

presented in section 3. Section 4 presents the equivalence result. Section 5 presents suffi -

cient conditions for the restoration of Dutta-Sen’s positive result. Section 6 concludes.

2. Preliminaries

2.1 Basic framework

We consider a finite set of individuals indexed by i ∈ N = {1, · · · , n}, which we will refer
to as a society. The set of outcomes available to individuals is X. The information held by

the individuals is summarized in the concept of a state. Write Θ for the domain of possible

states, with θ as a typical state. In the usual fashion, individual i’s preferences in state θ are
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given by a complete and transitive binary relation, subsequently an ordering, Ri (θ) over the

set X. The corresponding strict and indifference relations are denoted by Pi (θ) and Ii (θ),

respectively. The preference profile in state θ is a list of orderings for individuals in N that

are consistent with that state and is denoted by RN (θ).

We assume that the mechanism designer does not know the true state. We assume,

however, that there is complete information among the individuals in N . This implies that

the mechanism designer knows the preference domain consistent with the domain Θ. In this

paper, we identify states with preference profiles.

The goal of the mechanism designer is to implement a SCR F : Θ � X where

F (θ) is non-empty for any θ ∈ Θ. We shall refer to x ∈ F (θ) as an F -optimal out-

come at θ. Given that individuals will have to be given the necessary incentives to reveal

the state truthfully, the mechanism designer delegates the choice to individuals accord-

ing to a mechanism Γ ≡
(∏
i∈N

Mi, g

)
, where Mi is the strategy space of individual i and

g : M → X, the outcome function, assigns to every strategy profile m ∈ M ≡
∏
i∈N

Mi a

unique outcome in X. We shall sometimes write (mi,m−i) for the strategy profile m, where

m−i = (m1, · · · ,mi−1,mi+1, · · · ,mn).

An honesty standard of individual i, denoted by S (i), is a subgroup of society with the

property that i ∈ S (i). Thus, given a state θ, RS(i) (θ) is a list of orderings consistent with θ

for individuals in the honesty standard S (i) of individual i. An honesty standard of society

is a list of honesty standards for all members of society. Write S (N) for a typical honesty

standard of society.

2.2 Intrinsic preferences for honesty

We assume that in a state θ, every truthful strategy choice of individual i is to encode

information of individuals’orderings consistent with that state for members of society in her

honesty standard S (i). Moreover, if in two different states, say θ and θ′, the orderings con-

sistent with those two states for individuals in S (i) are the same, then the sets of individual

i’s truthful strategy choices for those two states need to be identical according to her honesty

standard S (i). This is captured by the following notion of truth-telling correspodence:

Definition 1 For each Γ and each individual i ∈ N with an honesty standard S (i), individ-

ual i’s truth-telling correspondence is a (non-empty) correspondence T Γ
i (·;S (i)) : Θ � Mi

with the property that for any two states θ and θ′, it holds that

T Γ
i (θ;S (i)) = T Γ

i (θ′;S (i)) ⇐⇒ RS(i) (θ) = RS(i) (θ′) .
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Strategy choices in T Γ
i (θ;S (i)) will be referred to as truthful strategy choices for θ according

to S (i).

In modeling intrinsic preferences for honesty, we adapt the notion of partially-honest

individuals of Dutta and Sen (2012) to our research question. First, a partially-honest indi-

vidual is an individual who responds primarily to material incentives. Second, she strictly

prefers to tell the truth whenever lying has no effect on her material well-being. That be-

havioral choice of a partially-honest individual can be modeled by extending an individual’s

ordering over X to an ordering over the strategy space M , because that individual’s prefer-

ence between being truthful and being untruthful is contingent upon announcements made

by other individuals as well as the outcome(s) obtained from them. By following standard

conventions of orderings, write <Γ,θ,S(i)
i for individual i’s ordering overM in state θ whenever

she is confronted with the mechanism Γ and has set her honesty standard at S (i). Formally,

our notion of a partially-honest individual is as follows:

Definition 2 For each Γ, individual i ∈ N with an honesty standard S (i) is partially-honest

if, for all θ ∈ Θ, her intrinsic preference for honesty <Γ,θ,S(i)
i on M satisfies the following

properties: for all m−i and all mi,m
′
i ∈Mi, it holds that

(i) If mi ∈ T Γ
i (θ;S (i)), m′i /∈ T Γ

i (θ;S (i)) and g (m)Ri (θ) g (m′i,m−i), then m �Γ,θ,S(i)
i

(m′i,m−i).

(ii) In all other cases, m <Γ,θ,S(i)
i (m′i,m−i) if and only if g (m)Ri (θ) g (m′i,m−i).

Intrinsic preference for honesty of individual i is captured by the first part of the above

definition, in that, for a given mechanism Γ, honesty standard S (i) and state θ, individ-

ual i strictly prefers the message profile (mi,m−i) to (m′i,m−i) provided that the outcome

g (mi,m−i) is at least as good as g (mi,m−i) according to her ordering Ri (θ) and that mi is

truthful for θ and m′i is not truthful for θ, according to S (i).

If individual i is not partially-honest, this individual cares for her material well-being

associated with outcomes of the mechanism and nothing else. Then, individual i’s ordering

over M is just the transposition into space M of individual i’s relative ranking of outcomes.

More formally:

Definition 3 For each Γ, individual i ∈ N with an honesty standard S (i) is not partially-

honest if, for all θ ∈ Θ, her intrinsic preference for honesty <Γ,θ,S(i)
i on M satisfies the

following property: for all m,m′ ∈M , it holds that

m <Γ,θ,S(i)
i m′ ⇐⇒ g (m)Ri (θ) g (m′) .
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2.3 Implementation problems

In formalizing the mechanism designer’s problems, we first introduce our informational

assumptions and discuss their implications for our analysis. They are:

Assumption 1 There exists at least one partially-honest individual in the society N .

Assumption 2 The mechanism designer knows the honesty standard of the society N .

The above two assumptions combined with the assumption that there is complete in-

formation among the individuals imply that the mechanism designer only knows the set Θ,

the fact that there is at least one partially-honest individual among the individuals and the

honesty standard of society, but he does not know either the true state or the identity of the

partially-honest individual(s). Indeed, the mechanism designer cannot exclude any mem-

ber(s) of society from being partially-honest purely on the basis of Assumption 1. Therefore,

the following considerations are in order from the viewpoint of the mechanism designer.

An environment is described by three parameters, (θ, S (N) , H): a state θ, an honesty

standard of society S (N) and a conceivable set of partially-honest individuals H. We denote

by H a typical conceivable set of partially-honest individuals in N , with h as a typical

element, and by H the class of conceivable sets of partially-honest individuals.
Amechanism Γ and an environment (θ, S (N) , H) induce a strategic game

(
Γ,<Γ,θ,S(N),H

)
,

where

<Γ,θ,S(N),H≡
(
<Γ,θ,S(i)
i

)
i∈N

is a profile of orderings over the strategy space M as formulated in Definition 2 and in

Definition 3. Specifically, <Γ,θ,S(i)
i is individual i’s ordering overM as formulated in Definition

2 if individual i is in H, whereas it is the individual i’s ordering over M as formulated in

Definition 3 if individual i is not in H.

A (pure strategy) Nash equilibrium of the strategic game
(
Γ,<Γ,θ,H,S(N)

)
is a strategy

profile m such that for all i ∈ N , it holds that

for all m′i ∈Mi : m <Γ,θ,S(i)
i (m′i,m−i) .

Write NE
(
Γ,<Γ,θ,S(N),H

)
for the set of Nash equilibrium strategies of the strategic game(

Γ,<Γ,θ,S(N),H
)
and NA

(
Γ,<Γ,θ,S(N),H

)
for its corresponding set of Nash equilibrium out-

comes.

The following definition is to formulate the mechanism designer’s Nash implementation

problem involving partially-honest individuals in which the society maintains the standard

of honesty summarized in S (N).
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Definition 4 Let Assumption 1 be given. Let the honesty standard of society be summa-
rized in S (N). A mechanism Γ partially-honestly Nash implements the SCR F : Θ � X

provided that for all θ ∈ Θ and H ∈ H there exists for any h ∈ H a truth-telling

correspondence T Γ
h (θ;S (h)) as formulated in Definition 1 and, moreover, it holds that

F (θ) = NA
(
Γ,<Γ,θ,S(N),H

)
. If such a mechanism exists, F is said to be partially-honestly

Nash implementable.

The objective of the mechanism designer is thus to design a mechanism whose Nash

equilibrium outcomes, for each state θ as well as for each conceivable set of partially-honest

individuals H, coincide with F (θ). Note that there is no distinction between the above

formulation and the standard Nash implementation problem as long as Assumption 1 is

discarded.

3. A necessary condition

In this section, we discuss a condition that is necessary for the partially-honest Nash

implementation where the honesty standard of society is prescribed by S (N).

A condition that is central to the implementation of SCRs in Nash equilibrium is Maskin

monotonicity. This condition says that if an outcome x is F -optimal at the state θ, and this

x does not strictly fall in preference for anyone when the state is changed to θ′, then x must

remain an F -optimal outcome at θ′. Let us formalize that condition as follows. For any

state θ, individual i and outcome x, the weak lower contour set of Ri (θ) at x is defined by

Li (θ, x) = {x′ ∈ X|xRi (θ)x
′}. Therefore:

Definition 5 The SCR F : Θ � X is Maskin monotonic provided that for all x ∈ X and

all θ, θ′ ∈ Θ, if x ∈ F (θ) and Li(θ, x) ⊆ Li(θ
′, x) for all i ∈ N , then x ∈ F (θ′).

An equivalent statement of Maskin monotonicity stated above follows the reasoning

that if x is F -optimal at θ but not F -optimal at θ′, then the outcome x must have fallen

strictly in someone’s ordering at the state θ′ in order to break the Nash equilibrium via some

deviation. Therefore, there must exist some (outcome-)preference reversal if an equilibrium

strategy profile at θ is to be broken at θ′.

Our variant of Maskin monotonicity for Nash implementation problems involving partially-

honest individuals where the standard of honesty in a society is represented by S (N) can

be formulated as follows:

Definition 6 The SCR F : Θ� X is partial-honesty monotonic given the standard S (N)

provided that for all x ∈ X, all H ∈ H and all θ, θ′ ∈ Θ, if x ∈ F (θ) \F (θ′) and Li(θ, x) ⊆
Li(θ

′, x) for all i ∈ N , then for one h ∈ H : RS(h) (θ) 6= RS(h) (θ′).
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This says that if x is F -optimal at θ but not F -optimal at θ′ and, moreover, there is

a monotonic change of preferences around x from θ to θ′ (that is, whenever xRi (θ)x
′, one

has that xRi (θ
′)x′), then that monotonic change has altered preferences of individuals in

the honesty standard of a partially-honest individual h ∈ H (that is, RS(h) (θ) 6= RS(h) (θ′)).

Stated in the contrapositive, this says that if x is F -optimal at θ and there is a monotonic

change of preferences around x from θ to θ′ and, moreover, for any conceivable partially-

honest individual h inH that change has not altered preferences of individuals in her honesty

standard S (h), then x must continue to be one of the outcomes selected by F at the state

θ′. Note that if x is F -optimal at θ but not F -optimal at θ′, one has that RN (θ) 6= RN (θ′),

and thus any SCR is partial-honesty monotonic whenever the honesty standard of society is

such that S (i) = N for all i ∈ N .
The above condition is necessary for partially-honest Nash implementation. This is

because if x is F -optimal at θ but not F -optimal at θ′ and, moreover, the outcome x has

not fallen strictly in any individual’s ordering at the state θ′, then only a partially-honest

individual in the given conceivable set H can break the Nash equilibrium via a unilateral

deviation. Therefore, there must exist a partially-honest individual h ∈ H whose equilibrium

strategy to attain x at (θ, S (N) , H) is not a truthful strategy choice at (θ′, S (N) , H). It

implies RS(h) (θ) 6= RS(h) (θ′) according to Definition 1. Formally:

Theorem 1 Let Assumption 1 be given. Let the honesty standard of society be summarized
in S (N). The SCR F : Θ� X is partial-honesty monotonic given the standard S (N) if it

is partially-honestly Nash implementable.

Proof. Let Assumption 1 be given. Let the honesty standard of society be summarized in
S (N). Suppose that Γ ≡ (M, g) partially-honest Nash implements the SCR F : Θ � X.

For any x ∈ X, consider any environment (θ, S (N) , H) such that x ∈ F (θ). Then, there is

m ∈ NE
(
Γ,<Γ,θ,S(N),H

)
such that g (m) = x.

Consider any state θ′ ∈ Θ such that

for all i ∈ N and all x′ ∈ X : xRi (θ)x
′ =⇒ xRi (θ

′)x′. (1)

If there exists an individual i ∈ N such that g (m′i,m−i)Pi (θ
′) g (m), then, from (1),

g (m′i,m−i)Pi (θ) g (m), a contradiction of the fact that m ∈ NE
(
Γ,<Γ,θ,S(N),H

)
. Therefore,

we conclude that

for all i ∈ N and all m′i ∈Mi : g (m)Ri (θ
′) g (m′i,m−i) . (2)

Suppose that x /∈ F (θ′). Then, the strategy profile m is not a Nash equilibrium of(
Γ,<Γ,θ′,S(N),H

)
; that is, there exists an individual i ∈ N who can find a strategy choice
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m′i ∈ Mi such that (m′i,m−i) �
Γ,θ′,S(i)
i m. Given that (2) holds, it must be the case that

i ∈ H. From part (i) of Definition 2 we conclude, therefore, that

mi /∈ T Γ
i (θ′;S (i)) and m′i ∈ T Γ

i (θ′;S (i)) (3)

and that

g (m′i,m−i)Ri (θ
′) g (m) . (4)

Note that (2) and (4) jointly imply that

g (m′i,m−i) Ii (θ
′) g (m) . (5)

We show that RS(i) (θ) 6= RS(i) (θ′). Assume, to the contrary, that

for all h ∈ H : RS(h) (θ) = RS(h) (θ′) . (6)

Definition 1 implies that

for all h ∈ H : T Γ
h (θ;S (h)) = T Γ

h (θ′;S (h)) . (7)

From (3) and (7), it follows that

mi /∈ T Γ
i (θ;S (i)) and m′i ∈ T Γ

i (θ;S (i)) . (8)

Furthermore, given that i ∈ S (i), by definition of an individual honesty standard, (5) and

(6) jointly imply that

g (m′i,m−i) Ii (θ) g (m) . (9)

Given (8) and (9) and the fact that i ∈ H, Definition 2 implies that (m′i,m−i) �
Γ,θ,S(i)
i m,

which is a contradiction of the fact that m ∈ NE
(
Γ,<Γ,θ,S(N),H

)
. Thus, F is partial-honesty

monotonic given the honesty standard S (N).

4. Equivalence result

The classic paper on Nash implementation theory is Maskin (1999), which shows that

where the mechanism designer faces a society involving at least three individuals, a SCR is

Nash implementable if it is monotonic and satisfies the auxiliary condition of no veto-power.2

2Moore and Repullo (1990), Dutta and Sen (1991), Sjöström (1991) and Lombardi and Yoshihara (2013)
refined Maskin’s theorem by providing necessary and suffi cient conditions for an SCR to be implementable in
(pure strategies) Nash equilibrium. For an introduction to the theory of implementation see Jackson (2001),

9



The condition of no veto-power says that if an outcome is at the top of the preferences

of all individuals but possibly one, then it should be chosen irrespective of the preferences

of the remaining individual: that individual cannot veto it. Formally:

Definition 7 The SCR F : Θ� X satisfies no veto-power provided that for all θ ∈ Θ and

all x ∈ X, if there exists i ∈ N such that for all j ∈ N\ {i} and all x′ ∈ X : xRj (θ)x′, then

x ∈ F (θ).

Proposition 1 (Maskin’s Theorem, 1999) If n ≥ 3 and F : Θ � X is a SCR satisfying

Maskin monotonicity and no veto-power, then it is Nash implementable.

In a general environment such as that considered here, a seminal paper on Nash imple-

mentation problems involving partially-honest individuals is Dutta and Sen (2012). It shows

that for Nash implementation problems involving at least three individuals and in which

there is at least one partially-honest individual, the Nash implementability is assured by no

veto-power (Dutta and Sen, 2012; p. 157). From the perspective of this paper, Dutta-Sen’s

theorem can be formally restated as follows:

Proposition 2 (Dutta-Sen’s Theorem, 2012) Let Assumption 1 and Assumption 2 be given.
Let the honesty standard of society be summarized in S (N), where S (i) ≡ N for all i ∈ N .
If n ≥ 3 and F : Θ � X is a SCR satisfying partial-honesty monotonicity for the standard

S (N) and no veto-power, then it is partially-honestly Nash implementable.

As already noted in the previous section, any SCR is partial-honesty monotonic when-

ever the honesty standard of society is such that every individual considers truthful only

messages that encode the whole truth about preferences of individuals in society; that is,

S (i) = N for all i ∈ N . Clearly, S (i) = N for all i ∈ N is a particular kind of honesty

standard of individuals, and there is no reason to restrict attention to such standards.

In this section, we are interested in understanding the kind of honesty standards of

individuals which would make it impossible for the mechanism designer to circumvent the

limitations imposed by Maskin monotonicity. To this end, let us introduce the following

notion of standards of honesty of a society.

Definition 8 Given a society N involving at least two individuals, an honesty standard of

this society is said to be non-connected if and only if for all i ∈ N , i /∈ S (j) for some j ∈ N .

Given that the honesty standard of individual i includes the individual herself, by def-

inition of S (i), the honesty standard of society is non-connected whenever every one of its

Maskin and Sjöström (2002) and Serrano (2004).
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members is excluded from the honesty standard of another member of the society. Simply

put, members of a society do not concern themselves with the same individual.

It is self-evident that the kind of honesty standards in Dutta-Sen’s theorem are not

non-connected, because every individual of the society is interested in telling the truth about

the whole society. As another example of honesty standards of a society that are not non-

connected, consider a three-individual society where individual 1 concerns herself with herself

and with individual 2 (that is, S (1) = {1, 2}), individual 2 concerns herself with everyone
(that is, S (2) = {1, 2, 3}) and, finally, individual 3 concerns herself with herself and with
individual 1 (that is, S (3) = {1, 3}). The honesty standard of this three-individual society
is not non-connected because everyone concerns themselves with individual 1.

Moreover, it is not the case that every non-connected honesty standard of society implies

that every individual honesty standard be of the form S (i) 6= N , as we demonstrate with

the next example. Consider a three-individual society where individual 1 is concerned only

with herself (that is, S (1) = {1}), individual 2 with everyone (that is, S (2) = {1, 2, 3})
and individual 3 with herself and with individual 2 (that is, S (3) = {2, 3}). The honesty
standard of this society is non-connected given that individual 2 and individual 3 are both

excluded from the honesty standard of individual 1 and individual 1 is excluded from the

honesty standard of individual 3.

As is the case here, the above definition is a requirement for the honesty standard

of a society that is suffi cient for partial-honesty monotonicity to be equivalent to Maskin

monotonicity when two further assumptions are satisfied. The first assumption requires that

the family H includes singletons. This requirement is innocuous given that the mechanism

designer cannot exclude any individual from being partially-honest purely on the basis of

Assumption 1.

The second requirement is that the set of states Θ takes the structure of the Cartesian

product of allowable independent characteristics for individuals. More formally, the domain

Θ is said to be independent if it takes the form

Θ =
∏
i∈N

Θi,

where Θi is the domain of allowable independent characteristics for individual i, with θi as a

typical element. A typical example of independent domain is that each Θi simply represents

the domain of the preference orderings overX of individual i and so the domain of the profiles

of all individuals’preference orderings on X has the structure of the Cartesian product. In

such a case, in a state θ = (θi)i∈N , individual i’s preference ordering over X depends solely

on individual i’s independent characteristic θi rather than on the profile θ. Given that a

characteristic of individual i is independent from those of other individuals, the equivalence

11



result does not hold for the correlated values case.

The latter two requirements and the requirement that the honesty standard of society

needs to be non-connected are jointly suffi cient for partial-honesty monotonicity to imply

Maskin monotonicity. This can be seen as follows:

Consider a two-individual society whereΘ is the set of states andX is the set of outcomes

available to individuals. Let S (i) be the honesty standard of individual i = 1, 2. Consider

an outcome x and a state θ such that x is an F -optimal outcome at θ. Consider any other

state θ′ such that individuals’preferences change in a Maskin monotonic way around x from

θ to θ′. Maskin monotonicity says that x must continue to be an F -optimal outcome at θ′.

To avoid trivialities, let us focus on the case that θ 6= θ′, which means that RN (θ) 6= RN (θ′),

given that we identify states with preference profiles.

If every individual were concerned with the whole society, we could never invoke (the

contrapositive of) partial-honesty monotonicity to conclude that x should remain F -optimal

at θ′ because RN (θ) 6= RN (θ′). Furthermore, consider the case that individual 1 concerns

herself with only herself, that is, S (1) = {1}, while individual 2 with the whole society,
that is, S (2) = {1, 2}. Reasoning such as the one just used shows that partial-honesty
monotonicity cannot be invoked if R1 (θ) 6= R1 (θ′). The argument for honesty standards

of the form S (1) = {1, 2} and S (2) = {2} is symmetric. Thus, the only case left to be
considered is the one in which everyone concerns themselves with only themselves, that is,

S (i) = {i} for i = 1, 2. In this situation, the honesty standard of society is reduced to the

non-connected one. Note that standards considered earlier were not.

Suppose that preferences of individual 1 are identical in the two states, that is, R1 (θ) =

R1 (θ′). To conclude that x should be F -optimal at θ′ by invoking partial-honesty monotonic-

ity we need to find individual 1 in the family H. The argument for the case R2 (θ) = R2 (θ′)

is symmetric. Thus, if Ri (θ) = Ri (θ
′) for one of the individuals, the requirement that the

singleton {i} is an element of H is needed for the completion of the argument.
Suppose that preferences of individuals are not the same in the two states, that is,

Ri (θ) 6= Ri (θ
′) for every individual i, though they have changed in a Maskin monotonic way

around x from the state θ to θ′. In this case, one cannot directly reach the conclusion of

Maskin monotonicity by invoking partial-honesty monotonicity. One way to circumvent the

problem is to be able to find a feasible state θ′′ with the following properties: i) individuals’

preferences change in a Maskin monotonic way around x from θ to θ′′ and Ri (θ) = Ri (θ
′′)

for an individual i, and ii) individuals’preferences change in that way around x from θ′′ to

θ′ and Rj (θ′) = Rj (θ′′) for individual j 6= i. A domain Θ that assures the existence of such

a state is the independent domain.

Even if one were able to find such a state θ′′ by requiring an independent product

structure of Θ, one could not invoke partial-honesty monotonicity and conclude that x must
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continue to be an F -optimal outcome at θ′ whenever the family H did not have the appro-

priate structure. This can be seen as in the following argument.

Suppose that Θ is an independent domain. Then, states take the form of profiles of

individuals’characteristics, that is, θ = (θ1, θ2) and θ′ = (θ′1, θ
′
2). Moreover, the characteristic

of individual i in one state is independent from the characteristic of the other individual.

That is, Ri (θ) = Ri (θi) and Ri (θ
′) = Ri (θ

′
i) for every individual i. The product structure

of Θ assures that the states (θ1, θ
′
2) and (θ′1, θ2) are both available and each of them has the

properties summarized above.

Next, suppose that the family H has a structure given by {{1} , {1, 2}}. One can invoke
partial-honesty monotonicity for H = {1} to obtain that x is one of the outcomes chosen by
the SCR F at (θ1, θ

′
2) when the state changes from θ to (θ1, θ

′
2), but he cannot conclude that

x remains also F -optimal at θ′ when it changes from (θ1, θ
′
2) to θ′. The reason is that partial-

honesty monotonicity cannot be invoked again for the case H = {2} because the structure
of the family H does not contemplate such a case. The argument for the case that H takes
the form {{2} , {1, 2}} is symmetric. Thus, each of our requirements is indispensable, and
jointly they lead to the following conclusion:

Theorem 2 Let N be a society involving at least two individuals, Θ be an independent

domain and H include singletons. Suppose that the honesty standard of the society is non-
connected. Partial-honesty monotonicity is equivalent to Maskin monotonicity.

Proof. Let n ≥ 2, Θ be an independent domain and H include singletons. Let S (N)

be a non-connected honesty standard of N . One can see that Maskin monotonicity implies

partial-honesty monotonicity.

For the converse, consider any SCR F : Θ� X satisfying partial-honesty monotonicity.

Consider any x ∈ X and any state θ ∈ Θ such that x is an F -optimal outcome at θ. Moreover,

consider any state θ′ such that individuals’preferences change in a Maskin monotonic way

around x from θ to θ′, that is,

for all i ∈ N and all x′ ∈ X : xRi (θ)x
′ =⇒ xRi (θ

′)x′.

We show that x remains F -optimal at θ′.

If characteristics of individuals in the honesty standard of individual i ∈ N are identical

in the two states, that is, RS(i) (θ) = RS(i) (θ′), partial-honesty monotonicity for the case

H = {i} assures that x is still F -optimal at θ′. Thus, let us consider the case RS(i) (θ) 6=
RS(i) (θ′) for every individual i ∈ N .

To economize notation, for any subset K of N , write KC for the complement of K in

N . Therefore, for any non-empty subset K of N , we can write any non-trivial combination

of the states θ and θ′ as
(
θK , θ

′
KC

)
, where it is understood that θK is a list of characteristics
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of individuals in K at the state θ and θ′KC
is a list of characteristics of individuals in KC

at θ′. Note that any state that results by that combination is available in Θ because of its

product structure.

Given that the honesty standard of society is non-connected, there must be an individual

j (1) ∈ N who does not concern herself with the whole society, that is, S (j (1)) 6= N .

Consider the state (
θK(1), θ

′
K(1)C

)
where K (1) ≡ S (j (1)) ,

and call it θ1. By construction, individuals’preferences change in a Maskin monotonic way

around x from θ to θ1 and, moreover, θK(1) = θ1
K(1). Partial-honesty monotonicity for the

case H = {j (1)} assures that the x remains an F -optimal outcome at θ1.

If there is an individual i ∈ N\ {j (1)} who is not concerned with any of the individuals
in the honesty standard of individual j (1), that is, the intersection S (i)∩S (j (1)) is empty,

then partial-honesty monotonicity for the case H = {i} assures that x is still F -optimal at
θ′. This is because, by construction, individuals’preferences change in a Maskin monotonic

way around x from θ1 to θ′ and θ1
S(i) = θ′S(i).

Thus, consider any individual j (2) ∈ N\ {j (1)}, and denote by K (2) the set of indi-

viduals who jointly concern individual j (1) and individual j (2) according to their individual

honesty standards. Furthermore, consider the state(
θK(2), θ

′
K(2)C

)
where K (2) ≡ K (1) ∩ S (j (2)) ,

and call it θ2. By construction, individuals’preferences change in a Maskin monotonic way

around x from θ1 to θ2 and, moreover, θ1
S(j(2)) = θ2

S(j(2)). Partial-honesty monotonicity for

the case H = {j (2)} assures that x remains an F -optimal outcome at θ2.

If there is an individual i ∈ N\ {j (1) , j (2)} who is not concerned with any of the
individuals with whom individuals j (1) and j (2) are jointly concerned, partial-honesty

monotonicity for the case H = {i} assures that x is also F -optimal at θ′. This is be-

cause, by construction, individuals’preferences change in a Maskin monotonic way around

x from θ2 to θ′ and θ2
S(i) = θ′S(i).

Thus, consider any individual j (3) ∈ N\ {j (1) , j (2)}, and denote by K (3) the set of

individuals that jointly concern individuals j (1), j (2) and j (3) according to their individual

honesty standards. Furthermore, consider the state(
θK(3), θ

′
K(3)C

)
where K (3) ≡ K (2) ∩ S (j (3)) ,

and call it θ3. By construction, individuals’preferences change in a Maskin monotonic way

around x from θ2 to θ3 and, moreover, θ2
S(j(3)) = θ3

S(j(3)). Partial-honesty monotonicity for
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the case H = {j (3)} assures that x remains an F -optimal outcome at θ3.

As above, if there is an individual i ∈ N\ {j (1) , j (2) , j (3)} who is not concerned with
any of the individuals with whom individuals j (1), j (2) and j (3) are jointly concerned,

partial-honesty monotonicity for the case H = {i} assures that x remains also F -optimal
at θ′, because, by construction, individuals’preferences change in a Maskin monotonic way

around x from θ3 to θ′ and θ3
S(i) = θ′S(i). And so on.

Since the society N is a finite set and the above iterative reasoning is based on its

cardinality, we are left to show that it must stop at most after n− 1 iterations.

To this end, suppose that we have reached the start of the n − 1th iteration. Thus,

consider any individual j (n− 1) ∈ N , with j (n− 1) 6= j (r) for r = 1, · · · , n−2, and denote

by K (n− 1) the set of individuals that jointly concern individuals j (1), j (2) , · · · , j (n− 2)

and j (n− 1) according to their individual honesty standards. Furthermore, consider the

state (
θK(n−1), θ

′
K(n−1)C

)
where K (n− 1) ≡ K (n− 2) ∩ S (j (n− 1)) ,

and call it θn−1. As above, by construction, individuals’preferences change in a Maskin

monotonic way around x from θn−2 ≡
(
θK(n−2), θ

′
K(n−2)C

)
to θn−1 and, moreover, θn−2

S(j(n−1)) =

θn−1
S(j(n−1)). Partial-honesty monotonicity for the case H = {j (n− 1)} assures that x is an
F -optimal outcome at θn−1.

At this stage there is only one individual inN who is left to be considered. Call her j (n).

Suppose that this individual is concerned with one of the individuals for whom individuals

j (1), j (2) , · · · , j (n− 2) and j (n− 1) are jointly concerned. In other words, suppose that

the intersection K (n− 1) ∩ S (j (n)) is non-empty. Then, the whole society concerns itself

with one of its member, and this contradicts the fact that the honesty standard of society is

non-connected. Therefore, it must be the case that individual j (n) is not concerned with any

of the individuals with whom individuals j (1), j (2) , · · · , j (n− 2) and j (n− 1) are jointly

concerned according to their individual honesty standards. Partial-honesty monotonicity for

the case H = {j (n)} assures that x remains also F -optimal at θ′ given that, by construction,
individuals’preferences change in a Maskin monotonic way around x from θn−1 to θ′ and

θn−1
S(j(n)) = θ′S(j(n)).

The iterative reasoning would stop at the rth (< n− 1) iteration if there were an in-

dividual i ∈ N\ {j (1) , · · · , j (r)} who did not concern itself with any of the individuals in
K (r), that is, if the intersection S (i) ∩ K (r) were empty. If that were the case, then the

desired conclusion could be obtained by invoking partial-honesty monotonicity for H = {i}
because, by construction, it would hold that individuals’preferences change in a Maskin

monotonic way around x from θr to θ′ and that θrS(i) = θ′S(i).

In light of Theorem 1 and Maskin’s theorem, the main implications of the above con-
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clusion can be formally stated as follows:

Corollary 1 Let N be a society involving at least two individuals, Θ be an independent

domain and H include singletons. Suppose that the honesty standard of the society is non-
connected. Let Assumption 1 be given. The SCR F : Θ � X is Maskin monotonic if it is

partially-honestly Nash implementable.

Corollary 2 Let N be a society involving at least three individuals, Θ be an independent

domain and H include singletons. Suppose that the honesty standard of the society is non-
connected. Let Assumption 1 be given. Any SCR F : Θ � X satisfying no veto-power is

partially-honestly Nash implementable if and only if it is Maskin monotonic.

Remark 1 In a related but not identical setting, Kartik and Tercieux (2012) study Nash im-
plementation problems where agents can choose to provide evidence as part of their strategies.

In this setup, they show that any social choice function satisfying a weaker variant of Maskin

monotonicity, called evidence-monotonicity, and no veto-power is Nash implementable. In

an environment where there are partially-honest individuals, they show that even small in-

trinsic costs of lying create a substantial wedge between evidence-monotonicity and Maskin

monotonicity, in the sense that every social choice function is evidence-monotonic. Under

the assumptions of Theorem 2 and suitable specifications which resemble those of Example

2 in Kartik and Tercieux (2012; p. 333), one can show that this wedge disappears when

participants are allowed/forced to produce partial evidence of the true state according to a

non-connected (evidence) standard S(N).3

5. Restoration of Dutta-Sen’s theorem on Nash imple-

mentation with strategy space reduction

In an environment in which knowledge is dispersed, how individuals will interact with

the mechanism designer is a natural starting point when it comes to Nash implementing a

3To see it, let us suppose that individuals have separable preferences in the sense of Kartik and Tercieux
(2012; p. 238). That is, suppose that each agent’s (extended) preference ordering Ri (θ) over the outcome-
evidence space X × Ei is represented by a utility function of the form Ui (x, ei, θ) = ui (a, θ) − ci (ei, θ),
where ci (ei, θ) represents agent i’s cost of producing evidence ei. Fix any S (N) and let the domain Θ be
independent. For each individual i, let the evidence space be Ei =

∏
j∈S(i)

Θj . Fix any set H. For each h ∈ H,

let the cost function be ch
(
θ, θ′

)
= 0 if RS(h) (θ) = RS(h)

(
θ′
)
, otherwise, ch

(
θ, θ′

)
= ε > 0, where ε can be

arbitrarly small. For each i /∈ H, let ci
(
θ, θ′

)
= 0 for every θ and θ′. This structure implies that the set of

the least-evidence cost for h ∈ H given the pair (x, θ) is E`h (x, θ) =
{
θS(h)

}
while it is E`i (x, θ) = Ei for

every i /∈ H. Let the evidence function of invididual h ∈ H be e∗h (θ) =
{
RS(h) (θ)

}
for every θ ∈ Θ. Under

these specifications, one can now see from the proof of Theorem 2 that evidence-monotonicity (stated for
each H ∈ H) is equivalent to Maskin monotonicity.
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SCR. A particular kind of communication is, as we have done so far, to ask participants to

report preferences of the entire society. However, there is no reason to restrict attention to

such schemes.

Indeed, there may be suffi ciently strong reasons that make it necessary for the mecha-

nism designer to employ communication schemes that are simpler than the type of communi-

cation studied so far, and under which individuals behave as if their honesty standards were

non-connected. In light of Theorem 2, in cases like this, the predicted result is that the mech-

anism designer may not be able to escape the limitations imposed by Maskin monotonicity

and he is thus expected to do poorly. A natural question that arises immediately is: Under

which conditions would the positive suffi ciency result of Dutta and Sen (2012) be restored?

Given our abstract framework, we answer this question by placing it within the literature on

strategy space reduction in Nash implementation. A pioneering work in this respect is Saijo

(1988).4

The basic idea behind the literature on strategy space reduction is to reduce the infor-

mational requirements in the preference announcement component of strategy choices. For

example, individual i may be required to choose only her own characteristics as part of her

strategy choice, or individual i can be required to choose her own characteristics and those

of her neighbor individual i+ 1, and so on. A way to proceed is to arrange individuals in a

circular fashion numerically clockwise - facing inward, and to require that each individual i

announces her own characteristics together with the characteristics of q−1 individuals stand-

ing immediately to her left, where 1 ≤ q ≤ n − 1. Following this literature, a q-mechanism

can be defined as follows:

Definition 9 For each q ∈ N , a mechanism Γq = (M, g) is a q-mechanism if, for each i ∈ N ,

Mi ≡
q+i−1∏
k=i

Θk ×X ×N , with the convention that n+ p = p for p ∈ N .

In this section, we assume that the actual honesty standard of participant i ∈ N is

S (i) = N . It is simply motivated by convenience, and the following arguments still hold for

some types of non-connected honesty standards of the society as noted in Remark 4 below.

Let us imagine that the mechanism designer knows that participant i feels honest when

she is truthful about characteristics of the entire society and that she is forced to govern

the communication with individuals by a 2-mechanism; that is, by a communication scheme

that requires each individual i to choose her own characteristics and those of her adjacent

individual i + 1. Although the honesty standards of society are connected, this type of

communication scheme makes individual i behave as if her honesty standard was of the form

S (i; 2) ≡ {i, i+ 1}, and, thereby, it makes the society behave as if its honesty standard was
4See also McKelvey, 1989; Tatamitani, 2001; Lombardi and Yoshihara, 2013.
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non-connected: S (N ; 2) ≡ (S (i; 2))i∈N . The reason is that each individual is requested to

communicate on a subset of her actually honesty standard. On this basis, let us formalize

the mechanism designer’s partially-honest Nash implementation problem by a q-mechanism.

Write S (i; q) for a relevant honesty standard of participant i when a q-mechanism is applied,

and write S (N ; q) for a typical relevant honesty standard of society N when a q-mechanism

is applied. Therefore:

Definition 10 Let Assumption 1 and Assumption 2 be given. Let S (i) = N for each

i ∈ N . A q-mechanism Γq partially-honestly Nash implements the SCR F : Θ � X

provided that for all θ ∈ Θ and H ∈ H there exists for any h ∈ H a truth-telling cor-

respondence T Γq
h (θ;S (h; q)) as formulated in Definition 1 and, moreover, it holds that

F (θ) = NA
(
Γq,<Γq ,θ,S(N ;q),H

)
, where S (N ; q) ≡ (S (i; q))i∈N is the relevant honesty stan-

dard of N in the mechanism. If such a mechanism exists, F is said to be partially-honestly

Nash implementable by a q-mechanism.

It can be verified by means of Theorem 1 that for any given (relevant) honesty standard

S (N ; q), partial-honesty monotonicity with respect to S (N ; q) is a necessary condition for

partially-honest Nash implementation by a q-mechanism. Furthermore, it can also be verified

that the relevant honesty standard S (N ; q) of society N is non-connected as long as q 6= n.

Thus, this reduction would impair the ability of the mechanism designer to escape the

limitations imposed by Maskin monotonicity when some further assumptions of Theorem

2 are met.

Our next result states that the mechanism designer can circumvent the limitations

imposed by Theorem 2 and successfully partially-honest Nash implements SCRs that are

not Maskin monotonic by a q-mechanism provided that there are at least n− q+ 1 partially-

honest individuals in a society and that no participant has a veto-power.5 The reason is that

n − q + 1 is the minimal number of partially-honest individuals that assures that for every

conceivable set H of partially-honest individuals, the relevant honesty standard S (N ; q)

forms a covering of society N ; that is, N ⊆
⋃
h∈H

S (h, q).

Put differently, it provides a reference for the actual mechanism design: If the mechanism

designer knows that α(≥ 1) members of society have a taste for honesty, then he can expect

to do well by asking each participant to report her own characteristics and those of n − α
individuals and achieve, at most, an overall reduction in the size of the strategy space M

equal to n (α− 1). The following theorem substantiates our discussion:

5Recall that the importance of Dutta-Sen’s theorem for Nash implementation is that SCRs that are not
Maskin monotonic can be partially-honestly implemented if there is at least one individual who is partially-
honest in a society.
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Theorem 3 Let n ≥ 3. Let Assumption 1 and Assumption 2 be given. Let Θ be an

independent domain and let S (i) = N for each i ∈ N . Suppose that the SCR F : Θ � X

satisfies no veto-power and that it is not Maskin monotonic. Then, for any q ∈ N and any

environment (θ, S (N ; q) , H):

(a) The SCR F is partially-honestly implementable by a q-mechanism if the number of

partially-honest individuals in N is at least n− q + 1 with q 6= 1.

(b) Let the class H include singletons. The SCR F is not partially-honestly implementable

by a q-mechanism if the number of partially-honest individuals in N is lower than n− q+ 1.

Proof. Let the premises hold. Let us first show the part (a) of the statement. Suppose
that the number of partially-honest individuals in society is at least n − q + 1. We show

that the SCR F is partially-honestly implementable by a q-mechanism if it satisfies no veto-

power. A typical strategy played by individual i is denoted by mi =
(
θi, xi, zi

)
. For each

(m, θ, x) ∈M ×Θ×X, we say that m is:

(i) consistent with (θ, x) if xj = x and θj = (θj, θj+1, · · · , θq+j−1) for each j ∈ N .

(ii) for all i ∈ N , m−i consistent with (θ, x) if xj = x and θj = (θj, θj+1, · · · , θq+j−1) for each

j ∈ N\ {i}, and xi 6= x or θi 6= (θi, θi+1, · · · , θq+i−1).

In other words, a message profile m is consistent with (x, θ) if there is no break in the

cyclic announcement of characteristics and all individuals announce the outcome x. On the

other hand, it ism−i consistent with (x, θ) either if there are, at most, q consecutive breaks in

the cyclic announcement of characteristics such that these breaks happen in correspondence

of the characteristics announced by individual i, and x is unanimously announced or if

individual i announces an outcome different from the outcome x announced by the others,

and there are no more than q consecutive breaks in the cyclic announcement of characteristics

such that these breaks (if any) happen in correspondence of the characteristics announced

by individual i.

For each individual i, i’s truth-telling correspondence for a q-mechanism is defined as

follows: For all θ ∈ Θ,

(
θi, xi, zi

)
∈ T Γq

i (θ, S (i; q)) if and only if θi = (θi, θi+1, · · · , θq+i−1), with n+ p = p.

As in Lombardi and Yoshihara (2013)’s 2-mechanism, in our q-mechanism individuals

make a cyclic announcement of strategies while the profile of characteristics, that is, the

state, is determined without relying upon the deviator’s announcement. Thus, the outcome

function g is defined with the following three rules: For each m ∈M ,

Rule 1: If m is consistent with
(
θ̄, x
)
and x ∈ F

(
θ̄
)
, then g (m) = x.
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Rule 2: If for some i ∈ N , m−i is consistent with
(
θ̄, x
)
and x ∈ F

(
θ̄
)
, then g (m) = x.

Rule 3: Otherwise, a modulo game is played: identify the individual i =
∑
j∈N

zj (mod n).

This individual is declared the winner of the game, and the alternative implemented is the

one she selects.

Let us check that the above q-mechanism partially-honest implements F . Suppose that

θ ∈ Θ is the “true”state and that H ∈ H is the “true”set of partially-honest individuals.

Suppose that x ∈ F (θ). Letmi =
(
θi, x, zi

)
for each i ∈ N such that the corresponding strat-

egy profilem is consistent with (θ, x). Then, Rule 1 implies that g (m) = x. Note that no uni-

lateral deviation can change the outcome. Also, note that individual i is truthful in the pref-

erence announcement component θi of her strategy. Therefore, x ∈ NA
(
Γq,<Γq ,θ,S(N ;q),H

)
.

We now show that NA
(
Γq,<Γq ,θ,S(N ;q),H

)
⊆ F (θ). Let m ∈ NE

(
Γq,<Γq ,θ,S(N ;q),H

)
. To

avoid triviality, suppose that |X| ≥ 2.6 We distinguish three cases.

Suppose that m falls into Rule 1. Take any partially-honest individual h ∈ H. Suppose
thatmh /∈ T Γq

h (θ, S (h, q)). Then, it is the case that θh 6= (θh, θh+1, · · · , θq+h−1). By changing

mh into m′h ∈ T
Γq
h (θ, S (h, q)), agent h can induce Rule 2 and obtain g (m′h,m−h) = x. Given

that g (m) = g (m′h,m−h), that m
′
h ∈ T

Γq
h (θ, S (h, q)) and that mh /∈ T

Γq
h (θ, S (h, q)), it

follows from part (i) of Definition 2 that (m′h,m−h) �
Γq ,θ,S(h,q)
h m, which is a contradiction.

Therefore, we have established thatmh ∈ T Γq
h (θ, S (h, q)), and so θh = (θh, θh+1, · · · , θq+h−1).

Finally, we need to show that θ̄ = θ. Assume, to the contrary, that θ̄ 6= θ. Thus, θ̄j 6= θj

for some j ∈ N , and so individual j is not truthful in her announcement θj. Since every

partially-honest individual is truthful, individual j is not a partially-honest individual, that

is, j /∈ H. Furthermore, given that θ̄j 6= θj, it also follows that at least q − 1 individuals

standing immediately to her right are not partially-honest.7 Thus, there must be at least q

individuals in N who are not partially-honest, which contradicts the fact that there are at

least n − q + 1 partially-honest individuals, and so it must be the case that there are most

q − 1 individuals who are not partially-honest. We conclude that θ̄ = θ.

Suppose that m falls into Rule 2. We proceed according to whether xi 6= x or not.

Case 1: xi 6= x.

• Suppose that |X| 6= 2 or n 6= 3. If |X| > 2, then every individual j 6= i can induce Rule

3. Thus, we have that X ⊆ g (Mj,m−j) for each individual j ∈ N\ {i}. Otherwise,
let us suppose that |X| = 2 and that n 6= 3. By replacing x with xj = xi, individual

6For a set S, we write |S| to denote the number of elements in S.
7Recall that individuals are arranged in a circular fashion clockwise facing inward, and each i is required to

announce her own cahracteristics together with the characteristics of q− 1 individuals standing immediately
to her left.
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j can make
∣∣{` ∈ N |x` = x

}∣∣ ≥ 2 and
∣∣{` ∈ N |x` 6= x

}∣∣ ≥ 2. Since the outcome is

determined by Rule 3, individual j can attain any outcome in X by appropriately

choosing zj. Again, we have that X ⊆ g (Mj,m−j) for any j ∈ N\ {i}. Finally, let us
consider the case that |X| = 2 and that n = 3. Then, let N = {i− 1, i, i+ 1}, with
n + 1 = 1 and 1 − 1 = n. We proceed according to whether or not there exist two

distinct individuals `, `′ ∈ N such that |Θ`| 6= 1 and |Θ`′| 6= 1 hold.

• Suppose that there are two distinct individuals `, `′ ∈ N such that |Θ`| 6= 1 and

|Θ`′| 6= 1. In this case, individual i − 1 (resp., i + 1) can always induce Rule 3

by appropriately changing the announcement of her own characteristics or that of

her successor, and by carefully choosing the outcome announcement. To attain xi,

individual i− 1 (resp., i+ 1) has only to adjust the integer index.

• Suppose that for all two distinct individuals `, `′ ∈ N , it holds that |Θ`| = 1 or |Θ`′ | = 1.

Suppose that |Θk| = 1 for all k ∈ N . Sincem falls into Rule 2, it follows that x ∈ F (θ),

as desired.

Suppose that there exists k ∈ {i− 1, i, i+ 1} such that |Θk| 6= 1.

If either |Θi−1| > 1 or |Θi| > 1, then individual i−1 can induce Rule 3 by changingmi−1

to either m′i−1 =
((
θi−1
i−1,θ

i−1
−(i−1)

)
, x, zi−1

)
with θi−1

i−1 6= θ̄i−1 (if |Θi−1| > 1) or m′i−1 =((
θi−1
i ,θi−1

−i
)
, xi, zi−1

)
with θi−1

i 6= θ̄i (if |Θi| > 1). Individual i−1 can attain xi by an-

nouncing zi−1 by which individual i becomes the winner of the modulo game. Therefore,

we have that X ⊆ g
(
Mi−1,m−(i−1)

)
. Suppose that |Θi−1| = |Θi| = 1. If q = n, indi-

vidual i−1 can induce Rule 3 by changing mi−1 into m′i−1 =
((
θi−1
−(i+1), θ

i−1
i+1

)
, x, zi−1

)
,

with θi−1
i+1 6= θ̄i+1. Individual i−1 can attain xi by announcing zi−1 by which individual

i becomes the winner of the modulo game. Suppose that q 6= n. Individual i − 1

can change mi−1 into m′i−1 =
(
θi−1, xi, zi−1

)
. Note that

(
m′i−1,mi

)
is consistent with(

xi,
(
θi−1, θii+1

))
given that θi−1

i = θii. If x
i ∈ F

(
θi−1, θii+1

)
, then

(
m′i−1,m−(i−1)

)
falls

into Rule 2, and so g
(
m′i−1,m−(i−1)

)
= xi. If xi /∈ F

(
θi−1, θii+1

)
, then

(
m′i−1,m−(i−1)

)
falls into Rule 3. Individual i−1 can attain xi by announcing zi−1 by which she becomes

the winner of the modulo game. We have established that X ⊆ g
(
Mi−1,m−(i−1)

)
if

|Θk| 6= 1 for some k ∈ {i− 1, i, i+ 1}. Reasoning like that used for individual i − 1

shows that X ⊆ g
(
Mi+1,m−(i+1)

)
if |Θk| 6= 1 for some k ∈ {i− 1, i, i+ 1}. Thus,

X ⊆ g (Mj,m−j) for each individual j ∈ {i− 1, i+ 1}.

From the above arguments, we obtained that X ⊆ g (Mj,m−j) for each individual j ∈
N\ {i}. Given that m ∈ NE

(
Γq,<Γq ,θ,S(N),H

)
, it follows that g (Mj,m−j) = X ⊆ Lj (θ, x)

for each j ∈ N\ {i}. No veto-power implies that x ∈ F (θ).
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Case 2: xi = x.

Then, it is the case that θi 6=
(
θ̄i, θ̄i+1, · · · , θ̄q+i−1

)
given m−i is consistent

(
x, θ̄
)
and

xi = x. We proceed according to whether q = 2 or not.

• Suppose that q 6= 2. Thus, individual i is a unique deviator. By altering her strategy

choice mj into m′j =
(
θj, xj, zj

)
, with xj 6= x, individual j can induce Rule 3. Then, to

attain xj, individual j has only to announce zj by which she becomes the winner of the

modulo game. Since g (m) = x and since, moreover, the choice of xj 6= x was arbitrary,

we have that X ⊆ g (Mj,m−j). Thus, we have established that X ⊆ g (Mj,m−j)

for each individual j ∈ N\ {i}. Given that m ∈ NE
(
Γq,<Γq ,θ,S(N),H

)
, it follows that

g (Mj,m−j) = X ⊆ Lj (θ, x) for each j ∈ N\ {i}. No veto-power implies that x ∈ F (θ).

• Suppose that q = 2. We proceed according to the following sub-cases: 1) θii 6= θ̄i and

θii+1 6= θ̄i+1, and 2) θ
i
i 6= θ̄i and θ

i
i+1 = θ̄i+1.8

Suppose that θii 6= θ̄i and θ
i
i+1 6= θ̄i+1. Thus, individual i is a unique deviator. Reason-

ing like that used for the case q 6= 2 shows that x ∈ F (θ).

Suppose that θii 6= θ̄i and θ
i
i+1 = θ̄i+1. Suppose that x /∈ F

(
θ̄, θii

)
. Thus, individual i

is a unique deviator. Reasoning like that used for the case q 6= 2 shows that x ∈ F (θ).

Let us consider the case that

x ∈ F
(
θ̄−i, θ

i
i

)⋂
F
(
θ̄
)
. (10)

Then, i− 1 and i are both deviators.

Suppose that individual i ∈ H and that mi /∈ T Γq
i (θ, S (i; q)). If (θi, θi+1) =

(
θ̄i, θ̄i+1

)
,

then individual i can induce Rule 1 by changing mi into m′i =
((
θ̄i, θ̄i+1

)
, x, zi

)
∈

T
Γq
i (θ, S (i; q)). Given that g (m) = g (m′i,m−i), that m

′
i ∈ T

Γq
i (θ, S (i; q)) and that

mi /∈ T Γq
i (θ, S (i; q)), it follows from part (i) of Definition 2 that (m′i,m−i) �

Γq ,θ,S(i;q)
i

m, which is a contradiction. Suppose that (θi, θi+1) 6=
(
θ̄i, θ̄i+1

)
. By changing mi

into m′i = ((θi, θi+1) , x, zi) ∈ T
Γq
i (θ, S (i; q)), individual i can induce Rule 2, thus

g (m′i,m−i) = x. Given that g (m) = g (m′i,m−i), that m
′
i ∈ T

Γq
i (θ, S (i; q)) and that

mi /∈ T Γq
i (θ, S (i; q)), it follows from part (i) of Definition 2 that (m′i,m−i) �

Γq ,θ,S(i;q)
i m,

which is a contradiction. We conclude that mi ∈ T Γq
i (θ, S (i; q)) if i ∈ H.

Suppose that individual i− 1 ∈ H and that mi−1 /∈ T Γq
i−1 (θ, S (i− 1; q)). If (θi−1, θi) =(

θ̄i−1, θ
i
i

)
, then individual i − 1 can induce Rule 1 by changing mi−1 into m′i−1 =

((θi−1, θi) , x, z
i−1) ∈ T Γq

i−1 (θ, S (i− 1; q)). Given that g (m) = g
(
m′i−1,m−(i−1)

)
, that

8The sub-case θii = θ̄i and θ
i
i+1 6= θ̄i+1 is not explicitly considered, since it can be proved similarly to the

sub-case 2 shown below.
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m′i−1 ∈ T
Γq
i−1 (θ, S (i− 1; q)) and that mi−1 /∈ T Γq

i−1 (θ, S (i− 1; q)), it follows from part

(i) of Definition 2 that
(
m′i−1,m−(i−1)

)
�Γq ,θ,S(i−1;q)
i−1 m, which is a contradiction. Sup-

pose that (θi−1, θi) 6=
(
θ̄i−1, θ

i
i

)
. By changing mi−1 into m′i−1 = ((θi−1, θi) , x, z

i−1) ∈
T

Γq
i−1 (θ, S (i− 1; q)), individual i − 1 can induce Rule 2, thus g

(
m′i−1,m−(i−1)

)
= x.

Given that g (m) = g
(
m′i−1,m−(i−1)

)
, thatm′i−1 ∈ T

Γq
i−1 (θ, S (i− 1; q)) and thatmi−1 /∈

T
Γq
i−1 (θ, S (i− 1; q)), it follows from part (i) of Definition 2 that

(
m′i−1,m−(i−1)

)
�Γq ,θ,S(i−1;q)
i−1

m, which is a contradiction. We conclude that mi−1 ∈ T Γq
i−1 (θ, S (i− 1; q)) if i−1 ∈ H.

Suppose that individual j ∈ H\ {i− 1, i} and that mj /∈ T
Γq
j (θ, S (j; q)). Take any

xj 6= x. By changing mj into m′j = ((θj, θj+1) , xj, zj) ∈ T Γq
j (θ, S (j; q)), individual j

can induce Rule 3, where zj satisfies i =
∑
k∈N

zk (mod n), and thus g
(
m′j,m−j

)
=

x. Given that g (m) = g
(
m′j,m−j

)
, that m′j ∈ T

Γq
j (θ, S (j; q)) and that mj /∈

T
Γq
j (θ, S (j; q)), it follows from part (i) of Definition 2 that

(
m′j,m−j

)
�Γq ,θ,S(j;q)
j m,

which is a contradiction. We conclude that mj ∈ T Γq
j (θ, S (j; q)) if j ∈ H\ {i− 1, i}.

From the above arguments, we obtain that mh ∈ T Γq
h (θ, S (h, q)) for all h ∈ H. Also,

note that i−1 /∈ H if i ∈ H, given that θii 6= θ̄i. For the same reason, it holds that i /∈ H
if i−1 ∈ H. Given that there are at least n−q+1 = n−1 partially-honest individuals,

it is the case that at least one of the deviators is a partially-honest individual. If both

deviators are partially-honest, then arguments like those used above for the case q = 2

shows that either i or i − 1 can find a profitable unilateral deviation from the profile

m ∈ NE
(
Γq,<Γq ,θ,S(N),H

)
, which is a contradiction. Thus, it is the case that only one

of the deviators can be a partially-honest individual. Given that all partially-honest

individuals are truthful and given that (10) holds, it follows that x ∈ F (θ), as we

sought.

Suppose that m falls into Rule 3. By the definition of the outcome function, we have

that for each individual i, g (Mi,m−i) = X. Given that m ∈ NE
(
Γq,<Γq ,θ,S(N),H

)
, it follows

that g (Mi,m−i) = X ⊆ Li (θ, x) for each i ∈ N . No veto-power implies that x ∈ F (θ).

Let us show the part (b) of the statement. Suppose that the class H includes singletons
and that the number of partially-honest individuals in N is lower than n− q+1. Assume, to

the contrary, that the SCR F is partially-honestly Nash implementable by a q-mechanism.

Given that Assumption 1 assures that there is at least one individual who is partially-

honest, an immediate contradiction is obtained if q = n. Thus, let us consider the case

that q 6= n. Given that F is partially-honestly Nash implementable by a q-mechanism, it

follows that it is partially-honestly Nash implementable when the actual honesty standard of

society is S (N ; q). Theorem 1 implies that F is partially-honest monotonic w.r.t. S (N ; q).

Furthrmore, by assumption, the classH includes singletons and the domainΘ is indipendent.
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Since the honesty standard of the society S (N ; q) is non-connected, Corollary 2 implies that

the SCR F is Maskin monotonic, which is a contradiction.

We make several remarks below regarding Theorem 3.

Remark 2 It is known that Maskin’s theorem is robust against Saijo (1988)’s simplification
of Maskin’s communication scheme. Indeed, the class of Nash implementable SCRs is equiv-

alent to the class of SCRs that are Nash implementable by a q-mechanism provided that

q ≥ 2 (Lombardi and Yoshihara, 2013). In light of Theorem 3, this equivalence relationship

no longer holds if there are less than n− q + 1 individuals who have a taste for honesty.

Remark 3 Part (b) of the statement continues to hold if q = 1, that is, when every individ-

ual i ∈ N is required to choose only her own characteristics as part of her strategy choice,

like a self-relevant mechanism (Tatamitani, 2001). It means that if a non-Maskin monotonic

SCR F is partially-honestly Nash implementable by this type of mechanism, then all individ-

uals in a society need to be partially-honest. However, if the requirement q 6= 1 is dropped,

the part (a) of the statement fails to hold. The reason is that the mechanism constructed to

prove Theorem 3 detects a participant’s lie by relying on the play of other participants. This

type of detection is not possible in the case of a self-relevant mechanism. A suffi cient condi-

tion for the SCR F to be partially-honest Nash implementable by a self-relevant mechanism

is that F satisfies no veto-power as well as there is a worst outcome in X for any individual

i.

Remark 4 Note that Theorem 3 holds as long as S (i; q) ⊆ S (i) for each i ∈ N . Moreover,
when the relevant honesty standard of participant i in a q-mechanism is not a subset of her

actual honesty standards, that is, S (i; q) * S (i), then Maskin monotonicity may become

again a necessary condition for Nash implementation, though there is at least n − q + 1

partially-honest individuals in N . For instance, consider a society with n = 3 participants

and q = 2 for the q-mechanism. By Theorem 3, any SCR satisfying the no veto-power

condition is partially-honestly Nash implementable if there are at least two partially-honest

individuals, provided that S (i) = S (i; 2) for each participant i ∈ N . However, we can show
that any SCR satisfying partial-honesty monotonicity should also satisfy Maskin monotonic-

ity in a society with at least two partially-honest individuals if every participant i’s honesty

standard is S (i) = {i}.

Remark 5 Part (a) of Theorem 3 can be generalized by allowing the preference announce-

ment component of participant i to depend on her individual honest standard S (i), that is,

by allowing participant i to choose (θk)k∈S(i) as her strategy choice (plus two auxiliary data).

Specifically, it can be shown that the Nash implementability is assured by no veto-power
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if (i) the honesty standard of the society S (N) and the family H are such that for every

conceivable set H of partially-honest individuals, the union of individual honesty standards

of partially-honest individuals in H forms a covering of N , that is, N ⊆
⋃
h∈H

S (h), and (ii)

the honesty standard of the society S (N) is such that every individual’s preference is covered

at least twice, that is, for every participant i, it holds that i ∈ S (j) for some participant

j 6= i. Note that if requirement (ii) is not met, then the idea on which the above definition

of the outcome function is based on may not work. Also, note if requirement (i) is met, then

the singleton {i} is an element of the family H if S (i) = N .9

6. Concluding remarks

In an environment in which knowledge is dispersed, how individuals will interact with

the mechanism designer is a natural starting point when it comes to Nash implementing a

SCR. A particular kind of communication is, as in Dutta and Sen’s (2012) Theorem 1, to

ask participants to report preferences of the entire society. However, there is no reason to

restrict attention to such schemes.

There are multiple other ways for the mechanism designer to structure the exchange

of information with individuals, and there is no limit to how imaginative he can be. This

paper basically considered the Saijo-type simplifications of Maskin’s canonical mechanism

and concluded that since those simplifications let individuals behave as if their honesty

standards were non-connected, the seminal result of Dutta and Sen’s (2012) Theorem 1 does

not survive them if there are not enough partially-honest participants.

Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991)

have shown that Maskin’s theorem can be generalized to Bayesian environments. A neces-

sary condition for Bayesian Nash implementation is Bayesian monotonicity. In a Bayesian

environment involving at least three individuals, Bayesian monotonicity combined with no

veto-power is suffi cient for Bayesian Nash implementation provided that a necessary condi-

tion called closure and the Bayesian incentive compatibility condition are satisfied (Jackson,

1991). Although the implementation model developed in this paper needs to be modified

to handle Bayesian environments, we believe a similar equivalence result holds in those en-

vironments for suitably defined communication schemes (on this point, see Lombardi and

Yoshihara, 2013; section 5). This subject is left for future research.

9If S (N) is such that S (i) = N for all i ∈ N , then
⋃
h∈H

S (h) ⊇ N holds for any H ∈ H and any family

H. Therefore, any SCR satisfying the no veto-power condition is partially-honestly Nash implementable
without any restriction on the structure of the family H, as per Dutta-Sen (2012)’s Theorem.
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