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Abstract

We study Nash implementation by natural price-quantity mechanisms
in pure exchange economies with free-disposal (Saijo et al., 1996,
1999) where agents have weak/strong intrinsic preferences for hon-
esty (Dutta and Sen, 2012). Firstly, the Walrasian rule is shown to
be non-implementable where all agents have weak (but not strong)
intrinsic preferences for honesty. Secondly, the class of effi cient al-
location rules that are implementable is identified provided that at
least one agent has strong intrinsic preferences for honesty. Lastly,
the Walrasian rule is shown to belong to that class.
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1 Introduction

In implementation problems in classical economic environments, as Hurwicz
(1978), Otani and Sicilian (1982), and Thomson (1984) discuss, the informa-
tion that agents exchange in the allocation process typically concerns ongoing
prices and their optimal consumption bundles at these prices, that is, infor-
mation that lies in the graph of agents’true demand correspondences. There-
fore, a prominent and natural restriction on mechanisms for those problems
would be represented by price-quantity mechanisms, where each agent’s mes-
sage consists of a pair of a price vector and a demand quantity. Moreover, to
meet the requirements of an adequate theory of implementation (see, Jack-
son, 1992), Dutta et al. (1995), Sjöström (1996), and Saijo et al. (1996, 1999)
define the class of natural mechanisms in economic environments, a typical
example of which is a price-quantity mechanism satisfying feasibility, forth-
rightness, and the best response property; henceforth, natural price-quantity
mechanism (natural p-q mechanism).
In a seminal study that initiated a burgeoning literature, Matsushima

(2008a, 2008b) and Dutta and Sen (2012) studied implementation problems
where agents have intrinsic preferences for honesty. Loosely, an agent has
intrinsic preferences for honesty —called partially-honest —when she strictly
prefers to tell the truth whenever lying has no effect on her material payoff.1

This paper studies Nash implementation with partially-honest agents by
natural p-q mechanisms in pure exchange economies with free-disposal.2 It is
built upon two alternative notions of intrinsic preferences for honesty, though
for both of them the point of departure is that of the agent’s true demand
correspondence. With one type, a partially-honest agent has strong intrinsic
preferences for honesty if her truthful report consists of true prices as well
as of her true optimal bundle at those prices coinciding with the bundle
recommended by the allocation rule for the underlying economy. With the
other type, a partially-honest agent has weak intrinsic preferences for honesty
if her truthful report consists of her true optimal bundle compatible with the
allocation rule.
In a separable environment similar to ours, Dutta and Sen (2012) and

Kartik et al. (2014) show that any social choice function (SCF ) is imple-
mentable by a mechanism without any “tail-chasing”construction where all

1There are seminal related works such as Glazer and Rubinstein (1998), Eliaz (2002),
Corchón and Herrero (2004), and Kartik and Tercieux (2012).

2In economies with free-disposal the mechanism must only be weakly balanced.
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agents have small intrinsic preferences for honesty (a more detailed discussion
is given in section 3)3 and, like their results, none of ours hinge on any sort of
“tail-chasing”construction.4 Similarly, we also observe in section 3 that, in
light of the characterization result of Lombardi and Yoshihara (2013b), any
effi cient SCF is implementable by a natural p-q mechanism where all agents
have weak intrinsic preferences for honesty. This general positive result cru-
cially relies on the single-valuedness of allocation rules. If one abandons
the latter requirement (in favor of multi-valued allocation rules), that result
cannot be maintained. In fact, no natural price-quantity mechanism can
implement the Walrasian rule where all agents have weak (but not strong)
intrinsic preferences for honesty.5 Also, this contextualizing example provides
rationales that support the study of the strong variation of honesty, which,
in our view, is more appropriate for the type of implementation problems at
hand as well as more intimately connected with the notion of market equi-
librium. Then, in section 4, we identify the class of effi cient allocation rules
that are implementable by natural p-q mechanisms provided that there are
partially-honest agents having strong intrinsic preferences for honesty. Also,
the Walrasian rule is shown to belong to this class.
Section 2 of this paper presents the theoretical framework and outlines

the basic model, whereas the main results are presented in sections 3 and 4
with a brief concluding section 5.

2 The model

There are n ≥ 3 agents in N ≡ {1, ..., n} and ` ≥ 2 distinct commodities
in L ≡ {1, ..., `}. R is the set of reals; R+ (R++) denotes the set of non-
negative (positive) reals; R` is the Cartesian product of ordered `-tuples of
reals, whereas R`+ (R`++) denotes its non-negative (positive) orthant. Vector
inequalities are defined as follows: For all x, y ∈ R`, x ≥ y if x` ≥ y` for each
` ∈ L, x > y if x ≥ y and x 6= y, and x� y if x` > y` for each ` ∈ L.

3Their equilibrium solutions are not the Nash one, as discussed in section 3 below.
4Loosely speaking, the basic idea of the argument is that if agents announce a non-

equilibrium message profile, the mechanism provides agents with material incentives to
coordinate on an equilibrium message profile. This idea crucially hinges on the fact that
agents have intrinsic preferences for honesty and that free-disposal is allowed.

5We thank an anonymous reviewer for drawing our attention to this point. Also recall
that theWalrasian rule is not Nash implementable in the standard framework (see Hurwicz
et. al., 1995).
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Each i ∈ N is characterized by a consumption space R`+ (where xi =
(xi1, ..., xi`) ∈ R`+ is the i’s commodity bundle), by an endowment vector
ωi ∈ R`+ and by a preference relation defined over R`+.6 Let 0 denote the
zero consumption bundle. Each i’s preferences have a utility representation
ui : R`+ → R which is continuous and quasi-concave on R`+, and either
strongly monotone on R`+ or strongly monotone on R`++ such that the utility
of every interior consumption bundle is strictly higher than the utility of
any consumption bundle on the boundary. U is the class of all such utility
functions, whereas Ui is the class of admissible utility functions for i. The
aggregate endowment is denoted by Ω ≡

∑
ωi � 0,7 where the distribution

of endowments (ωi)i∈N ∈ Rn`+ is known and fixed.
Let Q ≡

{
xi ∈ R`+ | xi ≤ Ω

}
. For each i, each ui, and each xi ∈ Q,

L (xi, ui) ≡ {x′i ∈ Q | ui (xi) ≥ ui (x
′
i)} denotes the weak lower contour set

of agent i for ui at xi. An economy is specified by a list u = (ui)i∈N ∈
UN ≡ ×i∈NUi. An allocation is a list of bundles x = (x1, ..., xn) ∈ Rn`+ ,
whereas a feasible allocation is an allocation x = (x1, ..., xn) ∈ Rn`+ such that∑
xi ≤ Ω. Let 0 denote the feasible allocation in which every agent gets

the zero consumption bundle. The set of all feasible allocations is denoted
by A. Since no ambiguity can occur, u has to be understood as an element
of UN and we shall omit to refer it to UN . The set of (Pareto) effi cient
allocations for u, denoted by P (u), is P (u) ≡ {x ∈ A |there is no y ∈ A,
with ui (yi) > ui (xi) for all i}.
A social choice function (SCF ) is a single-valued mapping f : UN → A

such that for each u, Fi (u) 6= 0 for all i ∈ N and f (u) ∈ P (u). A social
choice correspondence (SCC ) is a multi-valued mapping F : UN � A such
that for each u, F (u) is a non-empty subset of P (u) and for each x ∈ F (u),
xi 6= 0 for all i ∈ N . Let F be the class of all such SCC s. For each u,
each allocation in F (u) is said to be an F -optimal allocation at u. The non-
zero property of any agent’s consumption bundle at any F -optimal allocation
represents the minimal condition of participation constraint. Among many
elements of F , we shall be concerned with the following well-known SCC :

Walrasian correspondence, W : For each u, W (u) ≡ {x ∈ A |there is
p ∈ R`+ such that for each i, p · xi = p · ωi and for each yi ∈ R`+,

6Hereafter unless otherwise specified lower case letters such as h, i, j, and k should be
understood as agents in N .

7When its bounds are not explicitly indicated, a summation should be understood to
cover all agents.
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ui (yi) > ui (xi) ⇒ p · yi > p · ωi}.

A mechanism is a pair γ ≡ (M, g), where M ≡M1 × ...×Mn, with each
Mi being a (non-empty) set and g : M → Rn`. It consists of a message space
M , where Mi is the message space for i, and an outcome function g such
that g (m) = (gi (m))i∈N ∈ Rn` for each m ∈ M . A generic message for i is
denoted bymi ∈Mi, while a message profile is bym ≡ (m1, ...,mn) ∈M . For
m ∈ M and j, let m−j ≡ (m1, ...,mj−1,mj+1, ...,mn) ∈ M−j ≡ ×i∈N\{j}Mi.
Given m−j ∈ M−j and mj ∈ Mj, (mj,m−j) is the message profile consisting
of mj and m−j. The attainable set of i at m−i, the set of bundles that i can
induce when the other agents select m−i, is denoted by g (Mi,m−i).

2.1 Implementation with partially-honest agents

For any (i, u) ∈ N ×UN , let <ui be i’s weak order overM under the economy
u. The asymmetric part of <ui is denoted by �ui , while the symmetric part
is denoted by ∼u

i . For any u ∈ UN , <u is the profile of weak orders over M
under the economy u; in other words, <u≡ (<ui )i∈N .
For each mechanism γ, each i, and each economy u, let T γi (u;F ) be a non-

empty subset of Mi, named a partially-honest domain of i at u, by means of
which, the notion of partially-honest agents is introduced as follows:

Definition 1 Agent h has intrinsic preferences for honesty if for each mech-
anism γ and each economy u, and for each m−h, her weak order <uh over M
satisfies the following two properties.
(i) Ifmh ∈ T γh (u;F ), m′h /∈ T

γ
h (u;F ), and uh(gh (mh,m−h)) ≥ uh(gh (m′h,m−h)),

then ((mh,m−h) , (m
′
h,m−h)) ∈�uh;

(ii) Otherwise, ((mh,m−h) , (m
′
h,m−h)) ∈<uh if and only if uh (gh (mh,m−h)) ≥

uh (gh (m′h,m−h)).

An agent h who has intrisic preferences for honesty is said to be a partially-
honest agent.

The subset T γi (u;F ) specifies the domain of the messages given in the
mechanism γ, on which i places an intrinsic value for honest behavior. The
notion of partially-honest domains is not only to specify at least a subset of
‘truthful messages’given in the mechanism, but also to represent the extent
of preferences for honesty each agent has in society. Therefore, though each
element in a partially-honest domain is interpreted as a truthful message
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in the mechanism, some of ‘truthful messages’ would not belong to that
domain if the intrinsic value for honesty is not placed on this message by the
partially-honest agents.8

Definition 2 Agent i has no intrinsic preference for honesty if for each
mechanism γ and each economy u, her weak order <ui over M satisfies the
following property: for each m and m′,

(m,m′) ∈<ui if and only if ui (gi (m)) ≥ ui (gi (m
′)) .

Unless stated otherwise, the following informational assumption holds
throughout the paper.

Assumption 1 There are partially-honest agents in N , which is acknowl-
edged by the mechanism designer, though she does not know their identities
or their exact number.

The mechanism designer cannot exclude any agent from being partially-
honest on the basis of information given by Assumption 1. To formalize
this fact, let H ⊆ 2N\ {∅} be a non-empty class of non-empty subsets of
N . Given the truly limited information injected by Assumption 1, in what
follows we shall view H as the class of conceivable sets of partially-honest
agents. Since no ambiguity can occur, H has to be understood as an element
of H and we shall omit to refer it to H.
A mechanism γ induces a class of (non-cooperative) games with partially-

honest agents
{(
γ,<u,H

)
| (u,H) ∈ UN ×H

}
, where <u,H denotes the profile

of agents’weak orders over M when u is the underlying economy and H is
the set of partially-honest agents. Given a game

(
γ,<u,H

)
, we say that

m∗ is a (pure strategy) Nash equilibrium with partially-honest agents at u
and H if and only if for all i,

(
m∗,

(
mi,m

∗
−i
))
∈<u,Hi for all mi. Given a

game
(
γ,<u,H

)
, NE

(
γ,<u,H

)
denotes the set of (Nash) equilibrium message

profiles of
(
γ,<u,H

)
, whereas NA

(
γ,<u,H

)
represents the corresponding set

of (Nash) equilibrium allocations.

Definition 3 A mechanism γ partially-honestly implements F in Nash equi-
libria, or simply partially-honestly implements F if and only if

for each u and each H : F (u) = NA
(
γ,<u,H

)
.

If such a mechanism exists, F is partially-honestly implementable.
8It is consistent with the motivation of Dutta and Sen (2012), who discuss implemen-

tation problems with small preferences for honesty.
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Definition 3 is similar, but not identical to, the standard definition of
implementation.9 First, the equilibrium allocations are given by the game(
γ,<u,H

)
rather than by the game (γ, u). Second, the equivalence of the

set of F -optimal allocations with the set of Nash equilibrium allocations is
required not only for each economy u but also for each conceivable set H.

2.2 Natural price-quantity mechanisms with free-disposal

Following Saijo et al. (1996, 1999), we now formalize the notion of im-
plementation with partially-honest agents by natural price-quantity mecha-
nisms with free-disposal. For each pair (ui, xi) ∈ Ui × Q, Vi (xi, ui) ≡ {yi ∈
Q|ui (xi) ≤ ui (yi)} denotes the weak upper contour set of agent i for ui at
xi. Given (ui, xi), a price vector p belonging to the unit simplex ∆, that
is, p ∈ ∆, is said to be a sub-gradient of ui at xi, denoted by ∇ui (xi), if
p · x′i ≥ p · xi for all x′i ∈ Vi (xi, ui). The set of sub-gradients of ui at xi,
denoted by ∇̄ui (xi), is called the sub-differential of ui at xi.
For each (x, u) ∈ Qn×UN , define the set of effi ciency prices for u at x as

Π (x, u) ≡
⋂
i

∇̄ui (xi) .

Notice that x ∈ P (u) if Π (x, u) is non-empty. In words, Π (x, u) consists of
prices p each of which is normal to a hyperplane separating the weak upper
contour sets of all agents with u at x.
For each economy u, each F -optimal allocation x associated with u, and

each effi ciency price p for u at x, let us define the following sets.

F−1 (x, p) ≡ {u′ | x ∈ F (u′) and p ∈ Π (x, u′)} , (1)

F−1
! (x, p) ≡ {u′ | x ∈ F (u′) and {p} = Π (x, u′)} , (2)

ΠF (x, u) ≡
{
p ∈ Π (x, u) | F−1

! (x, p) is non-empty
}
, (3)

and

πF (x, u) ≡
{

ΠF (x, u) if ΠF (x, u) is non-empty,
Π (x, u) otherwise.

(4)

9The two definitions are however identical if the family H is empty.
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Any p ∈ πF (x, u) is referred to as an effi ciency price for u and F at x.10 The
reader should consult Saijo et al. (1996, 1999) for a discussion of F−1 (x, p).
The difference between πF (x, u) and Π (x, u) centers on whether it is

possible to select effi ciency prices from the set Π (x, u) which are relevant for
the F -optimal allocation x at u. This point is particularly important where
F is the Walrasian correspondence (on this point see Saijo et al. 1999).

Definition 4 An SCC F ∈ F is partially-honestly implementable by a nat-
ural price-quantity mechanism if there exists a mechanism γ = (M, g) such
that:
(i) γ partially-honestly implements F .
(ii) For each i, Mi = ∆×Q.
(iii) For each u, each x ∈ F (u), and each p ∈ πF (x, u), if mi = (p, xi) for
each i, then m ∈ NE

(
γ,<u,H

)
for each H and g (m) = x.

(iv) γ is feasible: g (m) ∈ A for each m ∈M .
(v) γ satisfies the best response property: for all i, all ui, and all m−i, there
exists mi such that ui (gi (mi,m−i)) ≥ ui (gi (m

′
i,m−i)) for all m

′
i.

Call γ a natural price-quantity mechanism (natural p-q mechanism) if γ sat-
isfies the above requirements (ii)-(v).

The property (iii) is the forthrightness condition for a p-q mechanism,
which requires that in equilibrium each agent receives what she has an-
nounced as a bundle.11 Observe that our forthrightness condition differs
from that of Saijo et al. (1999) because it applies only to effi ciency prices in
πF (x, u) rather than to those in Π (x, u). We shall make use of this differ-
ence in the next sections, which will be relevant for the case where F is the
Walrasian correspondence.

10Note that, for any p ∈ Π (x, u) with x ∈ F (u), there always exists u′ ∈ UN such that
{p} = Π (x, u′) whenever UN contains the set of all linear utility functions. Indeed, if
u′i (xi) = p · xi for all i ∈ N , then {p} = Π (x, u′). However, note that F−1! (x, p) 6= ∅
does not necessarily follow from the case {p} = Π (x, u′). For instance, if F ≡ Wc is the
constrained Walrasian correspondence (on the definition of this, see Saijo et al. 1999), it
is possible that x ∈ Wc (u), p ∈ Π (x, u), {p} = Π (x, u′), but x /∈ Wc (u′), whenever p is
not a (constrained) Walrasian equilibrium price vector corresponding to x ∈Wc (u).
11The reader should refer to Dutta et al. (1995), Saijo et al. (1996), and Lombardi and

Yoshihara (2013a) for a more discussion on forthrightness.
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3 A contextualizing example and further con-
nections to the literature

The main works on implementation with partially-honest agents in economic
environments are Dutta and Sen (2012) and Kartik et al. (2014). They
assume that all agents have small intrinsic preferences for honesty, and by
focussing on SCF s, have the merit of devising mechanisms that do not use any
sort of “integer games”or “modulo games”. Dutta and Sen (2012; Definition
11) provide a separability condition under which any SCF is implementable
in strictly dominant strategies. Kartik et al. (2014) offer a condition called
separable punishment (Definition 2, p. 287) under which any SCF is imple-
mentable by a simple mechanism in two rounds of iterated deletion of strictly
dominated strategies. This section is to show that their results do not extend
to our problems provided that the attention is paid to SCC s.
In Dutta and Sen (2012), an agent i has intrinsic preferences for reporting

honestly the true economy u, whereas in problems of implementation by p-
q mechanisms, at least two types of intrinsic preferences for honesty could
be considered, as discussed in section 1. The first one is that an agent i
has intrinsic preferences for truthfully reporting her own demand quantity xi
that is also consistent with F (u), which is formalized as follows.

Definition 5 Given a natural p-q mechanism γ, an economy u, and an SCC
F , a partially-honest agent h has weak intrinsic preferences for honesty if her
partially-honest domain is

T γh (u;F ) ≡ {(p, xh) ∈ ∆×Q | ∃x−h : (xh, x−h) ∈ F (u)} .

A consumption bundle xh is said to be weakly truthful for u if and only if
(xh, x−h) ∈ F (u) for some x−h.
Lombardi and Yoshihara (2013b) propose a condition, called Monotonic-

ity with Weak Honesty (M-WH), which is necessary for implementation by
a natural p-q mechanism provided that agents have weak intrinsic preferences
for honesty. To define this condition, some notations should be introduced.
Let p ∈ ∆ and x = (xi)i∈N ∈ Qn be given. If x ∈ F (u) and p ∈ πF (x, u) for
some u, let

F̄−1 (x, p) ≡
{
u′|x ∈ F (u′) and p ∈ πF (x, u′)

}
, (5)
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and for each i, let
ΛF
i (x, p) ≡

⋂
u′∈F̄−1(x,p)

L (xi, u
′
i) . (6)

Then:

Condition M-WH Let H be given. For each u and u∗, each x ∈ F (u), and
each p ∈ πF (x, u), if ΛF

i (x, p) ⊆ L (xi, u
∗
i ) for each i and x /∈ F (u∗),

then for some i ∈ H, xi 6= x∗i for each x
∗ ∈ F (u∗).

M-WH is an intuitive condition: If the economy u moves to a new
economy u∗ in such a way that for each i the weak lower contour set for
u∗i at xi contains the set ΛF

i (x, p) and if x is an F -optimal allocation at u
but is not at u∗, then there must exist a partially-honest agent i for whom
the bundle xi is not weakly truthful for u∗.
The necessity of M-WH for the implementation is also easy to confirm:

Suppose that a natural p-q mechanism γ implements the effi cient allocation
rule F , and let us consider any set H of partially-honest agents with weak
intrinsic preferences for honesty and any two economies u and u∗ meeting the
premises of condtionM-WH. By the requirement (iii) of Definition 4 we are
sure that the message profile m where each agent i announces mi = (p, xi)
is an equilibrium one of the game

(
γ,<u,H

)
and that the outcome of the

mechanism is the allocation x = g (m). One way now to see the necessity
of M-WH is to assume, contrary to the statement, that for each partially-
honest agent i ∈ H there exists an F -optimal allocation x∗ at u∗ such that
x∗i = xi. Thus, for each agent in H, (p, xi) is weakly truthful for u∗ as
well. Since no agent can find a profitable deviation from m, one can see that
x is an equilibrium outcome of the game

(
γ,<u∗,H

)
, which contradicts the

supposition that x is not an F -optimal allocation at u∗.
Theorem 1 in Lombardi and Yoshihara (2013b) implies that condition

M-WH is also suffi cient for implementation if free-disposal is allowed. From
this, the following positive result for SCF s can be seen readily:

Corollary 1 Assume that all agents have weak intrinsic preferences for hon-
esty. Every effi cient SCF is partially-honestly implementable by a natural p-q
mechanism.12

12The proof can easily be obtained from the proof of Theorem 1 in Lombardi and Yoshi-
hara (2013b) by adapting it to economies with free-disposal. At the same time, the natural
price-quantity mechanism can be constructed without using any form of "tail-chasing"
construction, as in the proof of Theorem 1 of this paper, presented in the appendix.
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Note that this general positive result, although similar in flavor to (but not
an extension of,) those established by both Dutta and Sen (2012) and Kartik
et al. (2014), is obtained by a natural p-q mechanism.
However, many interesting allocation rules are not single-valued, and if

multi-valued allocation rules are concerned, there are still many interesting
rules which are non-implementable — the Walrasian correspondence, W , is
one of such examples. Example 1 below illustrates a violation of M-WH for
W where all agents have weak intrinsic preferences for honesty.

Example 1 Suppose that all agents have weak (but not strong) intrinsic pref-
erences for honesty. For the sake of simplicity, let n = ` = 3, and let
ωi = (1, 1, 1) for each i. Choose u such that a Walrasian equilib-
rium allocation at u is x1 = (3, 0, 1), x2 = (0, 3, 0), and x3 = (0, 0, 2),
with the equilibrium price p =

(
1
6
, 1

3
, 1

2

)
. Let x∗ = (x∗1, x

∗
2, x
∗
3), x∗∗ =

(x∗∗1 , x
∗∗
2 , x

∗∗
3 ), and x∗∗∗ = (x∗∗∗1 , x∗∗∗2 , x∗∗∗3 ) be allocations in A given by

(x∗1, x
∗
2, x
∗
3) = (x1, (0, 2, 0) , (0, 1, 2)) ,

(x∗∗1 , x
∗∗
2 , x

∗∗
3 ) =

((
3, 0, 1

4

)
, x2,

(
0, 0, 11

4

))
,

(x∗∗∗1 , x∗∗∗2 , x∗∗∗3 ) =
((

3, 0, 1
2

)
,
(
0, 3, 1

2

)
, x3

)
.

Furthermore, as shown in the following Figures, for each i there exists
a continuous, quasi-concave and strongly monotone utility function u∗i
such that the sub-gradient vector of u∗i at xi is

∇u∗1 (x1) =
(

1
4
, 1

2
, 1

4

)
, ∇u∗2 (x2) =

(
10
33
, 11

33
, 12

33

)
, and ∇u∗3 (x3) =

(
1
4
, 1

4
, 1

2

)
,

while the sub-gradient vector of u∗i at x
∗
i , at x

∗∗
i , and at x

∗∗∗
i is, respec-

tively,

∇u∗1 (x∗1) = ∇u∗1 (x1) , ∇u∗2 (x∗2) =
(

1
4
, 1

2
, 1

4

)
, and ∇u∗3 (x∗3) =

(
1
4
, 1

2
, 1

4

)
,

∇u∗1 (x∗∗1 ) =
(

10
33
, 11

33
, 12

33

)
, ∇u∗2 (x∗∗2 ) = ∇u∗2 (x2) , and ∇u∗3 (x∗∗3 ) =

(
10
33
, 11

33
, 12

33

)
,

∇u∗1 (x∗∗∗1 ) =
(

1
4
, 1

4
, 1

2

)
, ∇u∗2 (x∗∗∗2 ) =

(
1
4
, 1

4
, 1

2

)
, and ∇u∗3 (x∗∗∗3 ) = ∇u∗3 (x3) .

By construction, ΛW
i (x, p) ⊆ L (xi, u

∗
i ) for all i and x /∈ W (u∗) because

x1 /∈ arg maxp·x′1≤p·ω1 u
∗
1 (x′1). On the other hand, x∗ ∈ W (u∗) with the

equilibrium price p∗ =
(

1
4
, 1

2
, 1

4

)
, x∗∗ ∈ W (u∗) with the equilibrium

price p∗∗ =
(

10
33
, 11

33
, 12

33

)
, and x∗∗∗ ∈ W (u∗) with the equilibrium price

p∗∗∗ =
(

1
4
, 1

4
, 1

2

)
. We established that x∗ ∈ W (u∗) and x∗1 = x1, x∗∗ ∈

W (u∗) and x∗∗2 = x2, and x∗∗∗ ∈ W (u∗) and x∗∗∗3 = x3, in violation of
conditionM-WH.
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The main source of discrepancy between Example 1 and the existing
results in separable environments is that W is not a single-valued allocation
rule. Therefore, if we want to discuss the implementability of W by using
the existing results, this would force us to perform selections from W . This
may not be wise because a multi-valued allocation rule satisfying a property
of interest need not admit any single-valued selection with that property.13

Example 1 suggests that weak intrinsic preferences for honesty are too
weak to ensure the implementability of W . Indeed, under any mechanism γ
satisfying Definition 4(ii)-(v), if each agent in Example 1 announces mi =
(p, xi) at the economy u∗, then the outcome should be g (m) = x by Defini-
tion 4(iii). Then, since p cannot be a Walrasian equilibrium price vector at
u∗, no agent’s announcement is a truthful point in the graph of her demand
correspondence. However, (p, xi) ∈ T γi (u∗;W ) holds for any agent because
she only concerns about the truthfulness of her demand quantity announce-
ment, thus x ∈ W (u) \W (u∗) could be a Nash equilibrium allocation at
u∗.
13As an example, we may think of the upper-hemicontinuity ofW on exchange economies

with linear preferences.
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4 The main result

In this section, we introduce the second type of preferences for honesty, called
strong intrinsic preferences for honesty. Then, we show that whenever there
exists at least one agent having strong intrinsic preferences for honesty, an
SCC is implementable by a natural p-q mechanism if and only if it satisfies a
condition called Monotonicity/Punishment with Strong Honesty (MP-SH).
Our constructive proof does not rely on any sort of “tail-chasing”construction
that is common in the constructive proofs14 of the literature. An important
implication of our result is that W is implementable.
The strong intrinsic preference for honesty cares about honestly announc-

ing a particular point in the graph of an agent’s true demand correspon-
dence, that is, a pair (p, xi) such that xi is consistent with F (u), in that
(xi, x−i) ∈ F (u) for some x−i and p is an effi ciency price for u and F at
(xi, x−i). For instance, in the case of W , an agent i satisfies her strong in-
trinsic preferences for honesty if she reports a true pair of a Walrasian equi-
librium price vector and an associated equilibrium demand vector, rather
than a disequilibrium pair of prices and demand quantity.15

Formally, this notion can be stated as follows.

Definition 6 Given a natural p-q mechanism γ, an economy u, and an SCC
F , a partially-honest agent h has strong intrinsic preferences for honesty if
her partially-honest domain is

T γh (u;F ) ≡
{

(p, xh) ∈ ∆×Q | ∃x−h : (xh, x−h) ∈ F (u) and p ∈ πF ((xh, x−h) , u)
}
.

Definition 7 A pair (p, xh) ∈ ∆ × Q is said to be strongly truthful for u if
and only if (xh, x−h) ∈ F (u) and p ∈ πF ((xh, x−h) , u) for some x−h.

To facilitate our discussion, following Saijo et al. (1996, 1999), define the
set of potential deviators as

IF (p, x) ≡
{
i ∈ N |F̄−1

((
Ω−

∑
j 6=i

xj, x−i

)
, p

)
6= ∅

}
. (7)

14See Maskin (1999). For the criticism against such construction, see Jackson (1992).
15An analogous view can be applied to any F -optimal allocation and its associated

effi ciency price vector under certain conditions, because of the second welfare theorem.
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For each i, each ui and each xi, let ∂L (xi, ui) denote the upper boundary of
L (xi, ui), that is, ∂L (xi, ui) ≡ {x′i ∈ L (xi, ui) | ui (xi) = ui (x

′
i)}.

We can now state our necessary and suffi cient condition for implementa-
tion with partially-honest agents by natural p-q mechanisms under Definition
6.

Condition MP-SH Let H, F and (p, x) ∈ ∆×Qn be given. Then:

(i) Let IF (p, x) = N . Then, there exists z (p, x) ∈ A, with z (p, x) = x if∑
xi = Ω, such that zi (p, x) ∈ ΛF

i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
for each

agent i.

(ii) Let 1 ≤ #IF (p, x) ≤ n − 1. Then, there exists z̄ (p, x) ∈ A such that

for each i, z̄i (p, x) ∈ ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
if i ∈ IF (p, x) and

(p, xi) is strongly truthful for some u, or else z̄i (p, x) = 0.

(iii) For each agent i, there exists a map zi (·; (p, x−i)) : ∆ × Q → Q such
that for each (p′, x′i):

(iii.a) If (p′, x′i) is strongly truthful for some u
′ and i ∈ IF (p, (x′i, x−i)),

then zi ((p′, x′i) ; (p, x−i)) ∈ ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
, with

zi ((p
′, x′i) ; (p, x−i)) =

{
zi (p, x) if p′ = p and IF (p, (x′i, x−i)) = N ,

z̄i (p, (x
′
i, x−i)) if p′ = p and 1 ≤ #IF (p, (x′i, x−i)) ≤ n− 1.

(iii.b) Otherwise, zi ((p′, x′i) ; (p, x−i)) = 0.

(iv) For each u, if IF (p, x) = N , ΛF
k

((
Ω−

∑
j 6=k xj, x−k

)
, p
)
⊆ L (zk (p, x) , uk)

for each k, and z (p, x) /∈ F (u), then there is an agent i ∈ H for
whom (a) (p, xi) is not strongly truthful for u; and (b) there exists
a strongly truthful pair (p′, x′i) for u such that zi ((p

′, x′i) ; (p, x−i)) ∈
∂L (zi (p, x) , ui).

This condition applies to cases where all agents announce the same price
vector p. Firstly, if the announced profile of quantities x is F -optimal for some
economy and p is an effi ciency price vector for this economy and F at x, then
MP-SH(i) sets z (p, x) = x. Otherwise, it implies that there are potential
deviators in coordinating announcement of quantities, and if all agents are
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potential deviators,MP-SH(i) selects a feasible allocation and denotes it by
z (p, x); otherwise,MP-SH(ii) selects a feasible allocation and denotes it by
z̄ (p, x). In either case, any potential deviator i ∈ IF (p, x) can be punished

by a bundle within the intersection set ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
, which

is not better than Ω−
∑

j 6=i xj whatever i’s true utility function is.
Then,MP-SH(iii)-(iv) addresses the case where agents change their mes-

sages, and specifies a map zi (·; (p, x−i)) : ∆ × Q → Q which identifies how
to transform agent i’s bundle when she shifts her message from (p, xi) to
(p′, x′i). MP-SH(iii) basically states that zi ((p, xi) ; (p, x−i)) = zi (p, x) or
z̄i (p, x) whenever the profile ((p, xi) , (p, x−i)) corresponds to the premises
of MP-SH(i)-(ii). The most important part is MP-SH(iv): It addresses
the case where each agent i’s lower contour set of an economy u at zi (p, x)

contains the intersection set ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
but z (p, x) is not

F -optimal at u. To ensure the implementability in terms of Definition 4,
z (p, x) should not be a Nash equilibrium allocation at u under any natural
p-q mechanism. However, if the standard framework is presumed, this case
implies that there can be a natural p-q mechanism under which z (p, x) is
a Nash equilibrium at u, as Saijo et. al (1996, 1999) suggest. However,
under Assumption 1 with strong intrinsic preferences for honesty, to ensure
the implementability of F ,MP-SH(iv) exploits the existence of at least one
partially-honest agent i ∈ H for each given H ∈ H, whose strong intrinsic
preferences for honesty are not satisfied in the current message profile (p, x),
and specifies the bundle zi ((p′, x′i) ; (p, x−i)) by which she can be better off
when she shifts to a strongly truthful message (p′, x′i).
We shall now establish our main result.

Theorem 1 Let Assumption 1 hold in conjunction with strong intrinsic pref-
erences for honesty. An SCC F ∈ F is partially-honestly implementable by
a natural p-q mechanism if and only if it satisfies MP-SH.

Let us turn now to a brief discussion of the implications of Theorem 1.
While its main implication is a positive one, as given in Theorem 2 below,
we note an impossibility result: the effi cient egalitarian-equivalent correspon-
dence does not satisfy MP-SH.16

16See Lombardi and Yoshihara (2013b).
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Theorem 2 Let Assumption 1 hold in conjunction with strong intrinsic pref-
erences for honesty. Let UN = U × . . .× U︸ ︷︷ ︸

n times

. Then, W is partially-honestly

implementable by a natural p-q mechanism.

Let us briefly present the key details that lie behind the proof of The-
orem 2. Basically, we need to prove two things. Firstly, by specifying the
requirements of conditions MP-SH(i)-(iii) for the Walrasian rule we need
to prove the existence of consumption bundles satisfying those requirements.
Secondly, we need to prove the assertion that the Walrasian rule satisfies
conditionMP-SH(iv).
Let us start with the first of these. To prove that the consumption bundles

specified in conditionsMP-SH(i)-(iii) belong to the set ΛW
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
,

we begin by setting the allocation z(p, x) of conditionMP-SH(i) equal to x if
this allocation is such that the amount of each commodity is equal to the to-
tal amount available from the economy or else, equal to the zero consumption
allocation. In addition, we set the allocation z̄(p, x) of conditionMP-SH(ii)
equal to the zero consumption allocation. Finally, we define agent i’s function
zi (·; (p, x−i)) as follows. In all cases in which the requirements of condition
MP-SH(i) are met, we set zi ((p′, x′i) ; (p, x−i)) equal to zi(p, x). For all re-
maining cases, we set zi ((p′, x′i) ; (p, x−i)) equal to Ω −

∑
j 6=i xj if the pair

(p′, x′i) is strongly truthful for an economy and p
′ 6= p or else, equal to the

zero consumption bundle. From this, proving the verification of conditions
MP-SH(i)-(iii) should be as expected.
To prove that the Walrasian rule satisfies condition MP-SH(iv), a key

step here is to show that for each economy u and each Walrasian allocation x
associated with u, the set of effi ciency prices for u andW at x consists only of
Walrasian equilibrium prices for x. In other words, to show that p ·xi = p ·ωi
for each agent i if the price vector p belongs to πW (u, x). To prove this,
we start by observing that, by our domain supposition, the set of effi ciency
prices for u andW defined in (3) is never empty and so πW (u, x) = ΠW (u, x).
Then, for no economy can the pair (x, p) constitute a Walrasian equilibrium
if p is an effi ciency price for u at x such that p · xi 6= p · ωi for some agent i.
This leads straightforwardly to the conclusion that the price vector p cannot
be an effi ciency price for u and W at x if p is an effi ciency price for u at x
such that p · xi 6= p · ωi for some agent i. This step also provided us with
the familiar expression for the set ΛW

i (x, p): For each economy u and each
Walrasian allocation x associated with u, the set ΛW

i (x, p) coincides with the
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constrained Walrasian budget set.17

Let us add a few additional observations about its completion. Suppose
that the hypotheses of condition MP-SH(iv) hold. Firstly, this can only
be the case if z(p, x) = x. This provides us with the following observation:
(x, p) is a Walrasian equilibrium for an economy u′ and p is an effi ciency price
for W and u′ at x. Secondly, since x does not belong to W (u), it follows
that at prices p there is an agent k for whom the utility-maximizing bundle
is outside the set of feasible ones. This leads to this key observation: The
price vector p cannot be paired with any Walrasian equilibrium allocation for
the economy u. With the preceding observations and the help of the above
definition of zi (·; (p, x−i)), the verification of condition MP-SH(iv) should
not present any diffi culties. Indeed, let us consider any agent i in H who has
strong intrinsic preferences for honesty. From the preceding key observation
it is clear the pair (p, xi) is not strongly truthful for u. This verifies part (a)
of the conclusion of conditionMP-SH(iv). Let us consider any pair (p′, x′i)
which is instead strongly truthful for u. Since the price vector p cannot
be paired with any Walrasian equilibrium allocation for the economy u, it
follows that p′ 6= p. Note also that since, by supposition, IW (p, x) = N , it
follows that agent i belongs to IW (p, (x′i, x−i)). Lastly, from the definition
of zi ((p′, x′i) ; (p, x−i)) one has that zi ((p′, x′i) ; (p, x−i)) = Ω−

∑
j 6=i xj = xi.

From this, one can easily see that the Walrasian rule satisfies also part (b)
of the conclusion of conditionMP-SH(iv).

5 Concluding remarks

In this paper, weak and strong intrinsic preferences for honesty are intro-
duced in allocation problems of pure exchange economies with free-disposal,
and implementation problems by natural p-q mechanisms where agents have
weak/strong intrinsic preferences for honesty are studied. First, the Wal-
rasian rule is not implementable where all agents have weak (but not strong)
intrinsic preferences for honesty. Second, we offer a condition calledMonotonic-
ity/Punishment with Strong Honesty and show that not only does this condi-
tion fully identify the class of effi cient rules that are implementable when at
least one agent has strong intrinsic preferences for honesty, but that the Wal-
rasian rule also satisfies it. Thirdly, we observed that the effi cient egalitarian-

17The constrained Walrasian budget set is the intersection of the standard budget set
(defined by p and ωi) with Q.
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equivalent correspondence is not partially-honestly implementable by natural
p-q mechanisms.
Similar to the results of Dutta and Sen (2012) and Kartik et al. (2014),

free-disposal plays a crucial role for our results as well. When feasibility
constraints are imposed with an equality, the analysis of implementation
problems by natural p-q mechanisms is more diffi cult, as it requires the con-
struction of an outcome function satisfying the additional property of balance:
The sum of consumption bundles assigned to agents must always be equal
to the aggregate endowment. This analysis is undertaken in Lombardi and
Yoshihara (2013b).

Appendix

The following proofs were relegated from the text.

Proof of Theorem 1. Suppose that an SCC F ∈ F is partially-honestly
implementable by a natural p-q mechanism γ = (M, g). We show that F
satisfies MP-SH. Let (p, x) ∈ ∆ × Qn and H be given. Let m̄k = (p, xk) ∈
∆×Q for each k and m̄ ≡ (m̄k)k∈N .

Let IF (p, x) = N . Then for each i, F̄−1
((
x−i,Ω−

∑
k 6=i xk

)
, p
)
6=

∅. Take any i and any u′ ∈ F̄−1
((
x−i,Ω−

∑
k 6=i xk

)
, p
)
. Moreover, let

m =
(
m̄−i,

(
p,Ω−

∑
k 6=i xk

))
. Since

(
x−i,Ω−

∑
k 6=i xk

)
∈ F (u′) and p ∈

πF
((
x−i,Ω−

∑
k 6=i xk

)
, u′
)
, Definition 4(iii) implies g (m) =

(
x−i,Ω−

∑
k 6=i xk

)
andm ∈ NE

(
γ,<u′,H′

)
for eachH ′, so that g (Mi, m̄−i) ⊆ L

(
Ω−

∑
k 6=i xk, u

′
i

)
.

Since u′ is arbitrary, gi (Mi, m̄−i) ⊆ ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
. Since

i is arbitrary, gi (Mi, m̄−i) ⊆ ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
for each i. Let

z (p, x) = g (m̄). Then, for each i, zi (p, x) ∈ ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
.

If
∑
xi = Ω, then Ω −

∑
k 6=i xk = xi for each i, so that by Definition 4(iii),

gi (m̄) = xi for each i. Thus, F satisfiesMP-SH(i).
Suppose that 1 ≤ #IF (p, x) ≤ n − 1. By the same arguments as in

the preceding paragraph, gi (Mi, m̄−i) ⊆ ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
for all

i ∈ IF (p, x). For each i define z̄i (p, x) as follows: If i ∈ IF (p, x) and
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m̄i = (p, xi) is strongly truthful for some u, then z̄i (p, x) = gi (m̄), or else

z̄i (p, x) = 0. By this definition, z̄i (p, x) ∈ ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
if

i ∈ IF (p, x) and (p, xi) is strongly truthful for some u, and that z̄ (p, x) ∈ A.
Therefore, F satisfiesMP-SH(ii).
Fix an arbitrary i. Define the real-valued function zi (·; (p, x−i)) : ∆×Q→

Q as follows: For each (p′, x′i),

1. If (p′, x′i) is strongly truthful for some u
′, i ∈ IF (p, (x′i, x−i)), and p

′ 6=
p, then zi ((p′, x′i) ; (p, x−i)) = gi ((p

′, x′i) , m̄−i).

2. If (p′, x′i) is strongly truthful for some u
′, (p′, x′i) = (p, xi), and IF (p, x) =

N , then zi ((p, xi) ; (p, x−i)) = gi ((p, xi) , m̄−i).

3. If (p′, x′i) is strongly truthful for some u
′, i ∈ IF (p, (x′i, x−i)), p

′ =
p, and 1 ≤ #IF (p, (x′i, x−i)) ≤ n − 1, then zi ((p, x

′
i) ; (p, x−i)) =

gi ((p, x
′
i) , m̄−i).

4. Otherwise, zi ((p′, x′i) ; (p, x−i)) = 0.

By the definition, zi ((p, xi) ; (p, x−i)) = zi (p, x) for case 2, while zi ((p, xi) ; (p, x−i)) =

z̄i (p, x) for case 3. For case 1, since i ∈ IF (p, (x′i, x−i)), I
F
(
p,
(

Ω−
∑

k 6=i xk, x−i

))
=

N . By the same arguments as in the proof of MS-SH(i), gi (Mi, m̄−i) ⊆
ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
. Therefore, by the definition, zi ((p′, x′i) ; (p, x−i)) ∈

ΛF
i

((
x−i,Ω−

∑
k 6=i xk

)
, p
)
even for case 1. Since i is arbitrary, F satisfies

MP-SH(iii).
Fix any u. Let IF (p, x) = N , ΛF

k

((
x−k,Ω−

∑
j 6=k xj

)
, p
)
⊆ L (zk (p, x) , uk)

for each k, and z (p, x) /∈ F (u). Since gk (Mk, m̄−k) ⊆ ΛF
k

((
x−k,Ω−

∑
j 6=k xj

)
, p
)

and zk (p, x) = gk (m̄) for each k, gk (Mk, m̄−k) ⊆ L (zk (p, x) , uk) holds for
each k. Since z (p, x) /∈ NA

(
γ,<u,H

)
, it follows that for some i ∈ H, (p, xi)

is not strongly truthful for u. Moreover, since z (p, x) /∈ NA
(
γ,<u,H

)
and

gi (Mi, m̄−i) ⊆ L (zi (p, x) , ui), for the agent i ∈ H there exists a strongly

truthful (p′, x′i) for u such that gi ((p
′, x′i) , m̄−i) ∈ ΛF

i

((
x−i,Ω−

∑
j 6=i xj

)
, p
)

and gi ((p′, x′i) , m̄−i) ∈ ∂L (zi (p, x) , ui). By i ∈ IF (p, (x′i, x−i)) and the de-
finition of zi (·; (p, x−i)), zi ((p′, x′i) ; (p, x−i)) = gi ((p

′, x′i) , m̄−i). Thus, F
satisfiesMP-SH(iv). Hence, F satisfiesMP-SH.
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Conversely, suppose that F ∈ F satisfiesMP-SH. Denote the boundary
set of ∆ by ∂∆. For each (x, p) ∈ Qn ×∆, ∂ΛF

i (x, p) is the upper boundary
of ΛF

i (x, p), that is, ∂ΛF
i (x, p) ≡ {yi ∈ Q|yi ∈ ΛF

i (x, p) and @zi ∈ ΛF
i (x, p)

such that zi � yi}. For each i, let (pi, xii) denote agent i’s message. Finally,
for each profile m, u, x ∈ F (u) and p ∈ πF (x, u) define the sets

Nu (m) ≡ {k ∈ N |mk ∈ T γk (u, F (u))} and Nu (m; (x, p)) ≡ {k ∈ Nu (m) |mk = (p, xk)} .

With these preliminaries, we now define the outcome function g of a p-q
mechanism γ = (M, g) as follows. For each m,

Rule 1: If mj = (p, xj) for each j such that x ≡ (xj)j∈N ∈ F (u′) and
p ∈ πF (x, u′) for some u′, and, moreover,

∑
xj = Ω , then g (m) = x.

Rule 2: If mj = (p, xj) with xj 6= 0 for each j,
∑
xj 6= Ω and IF (p, x) = N

where x ≡ (xj)j∈N , then g (m) = z (p, x).

Rule 3: If mj = (p, xj) with xj 6= 0 for each j, 1 ≤ #IF (p, x) ≤ n−1 where
x ≡ (xj)j∈N , then g (m) = z̄ (p, x).

Rule 4: If, for some i, mj = (p, xj) for all j 6= i, mi = (pi, xi) with p 6= pi

and xi 6= 0, and i ∈ IF (p, x) where x ≡ (xj)j∈N , then:

g (m) =



(zi ((p
i, xi) ; (p, x−i)) ,0−i) if zi ((pi, xi) ; (p, x−i)) 6= 0

(xi,0−i)
if zi ((pi, xi) ; (p, x−i)) = 0 and

xi ∈ ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)

(x̂i,0−i) otherwise

where {x̂i} ≡ ∂ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)⋂
{yi ∈ R`+| ∃α ∈ R+, yi =

αxi}.

Rule 5: Otherwise,

Rule 5.1: If there is at least one agent i who announces xii = 0 and there ex-
ists (u′, x′, p′), with x′ ∈ F (u′) and p′ ∈ πF (x′, u′), such thatNu′ (m; (x′, p′))
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is non-empty and that #Nu′ (m; (x′, p′)) ≥ #Nu′′ (m; (x′′, p′′)) for all
(u′′, x′′, p′′), with x′′ ∈ F (u′′) and p′′ ∈ πF (x′′, u′′),18 then

g (m) =

(
x′1

(n+ 1)−#Nu′ (m; (x′, p′))
, ...,

x′n
(n+ 1)−#Nu′ (m; (x′, p′))

)
,

Rule 5.2: Otherwise, g (m) = 0.

According to the proposed construction, γ is a natural p-q mechanism.
Note that inRule 4, gi (m) = x̂i if pi ∈ ∂∆ and xii ∈ Q\ΛF

i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
,

since (pi, xii) /∈ T
γ
i (u′;F ) for all u′. Thus, agent i can realize any element of

the set ∂ΛF
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
by a suitable choice of (pi, xii).

Let u be the true economy. Fix an arbitrary H. We shall show that
F (u) = NA

(
γ,<u,H

)
. Since it is a routine exercise to prove F (u) ⊆

NA
(
γ,<u,H

)
, we shall omit the proof here. Conversely, letm ∈ NE

(
γ,<u,H

)
.

Note m cannot corresponds to Rule 3, nor to Rule 4, as every agent who
gets the zero bundle can induce Rule 5.1 which is a profitable deviation.

Case 1: m falls into Rule 1

Then, g (m) = x. Note that each i can induce Rule 4 and attain any
bundle x̂i ∈ ∂ΛF

i (x, p) by announcing m′i = (p′, x′i), with p′ ∈ ∂∆ and
x′i ∈ Q\ΛF

i (x, p), such that {x̂i} ≡ ∂ΛF
i (x, p)∩{yi ∈ R`+| ∃α ∈ R+ such that

yi = αxi}. Thus, ∂ΛF
i (x, p) ⊆ gi (Mi,m−i) ⊆ L (xi, ui) for each i. By the

strong monotonicity of ui, ΛF
i (x, p) ⊆ L (xi, ui) for each i.

If i ∈ H, mi /∈ T γi (u;F ), and there exists m′i = (p′, x′i) ∈ T γi (u;F )
such that gi (m′i,m−i) ∈ ∂L (xi, ui), then ((m′i,m−i) ,m) ∈�ui , which con-
tradicts m ∈ NE

(
γ,<u,H

)
. Therefore, for each i ∈ H, mi /∈ T γi (u;F )

implies gi ((p′, x′i) ,m−i) = zi ((p
′, x′i) ; (p, x−i)) /∈ ∂L (xi, ui) for any (p′, x′i) ∈

T γi (u;F ). By MP-SH(iv), x ∈ F (u).

Case 2: m falls into Rule 2

Then, g (m) = z (p, x). If
∑

zi (p, x) < Ω, since F is effi cient, z (p, x) /∈
F (u). By the same arguments as in Case 1, ΛF

i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
⊆

18If there is more than one of set Nu′ (m; (x′, p′)) having the same cardinaltiy, then fix
any one of the sets.
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L (zi (p, x) , ui) for each i. Then, by MP-SH(iv), there is i ∈ H with
m′i = (p′, x′i) ∈ T γi (u;F ) such that gi (m′i,m−i) = zi ((p

′, x′i) ; (p, x−i)) ∈
∂L (zi (p, x)i , ui), which contradicts m ∈ NE

(
γ,<u,H

)
. Thus,

∑
zi (p, x) =

Ω. Following the same arguments as in Case 1, z (p, x) ∈ F (u) byMP-SH.

Case 3: m falls into Rule 5

Since agents in H have strong intrinsic preferences for honesty and moreover,
agents respond primarily to material incentives, it is easy to see thatm cannot
correspond to Rule 5.2.19 We show that m cannot correspond to Rule 5.1
either.
Suppose that m falls into Rule 5.1. Then,

gk (m) =
x′k

(n+ 1)−#Nu′ (m; (x′, p′))
for each k.

Suppose that m is such that there are at least two agents, say i and i′,
who announce the zero vector 0. By changing mi into m′i = (p′, x′i) such that
i ∈ Nu′ ((m−i,m

′
i) ; (x′, p′)), i induces Rule 5.1 and obtains

gi (m−i,m
′
i) =

x′i
(n+ 1)−#Nu′ ((m−i,m′i) ; (x′, p′))

> gi (m) ,

19Assume, to the contrary, that m ∈ NE
(
γ,<u,H

)
falls into Rule 5.2. Then,

gi (m) = 0 and xii 6= 0 for each i. Moreover, for each i ∈ H, mi ∈ T γi (u;F ), oth-
erwise, each i ∈ H with mi /∈ T γi (u;F ) can switch mi to m′i ∈ T γi (u;F ) and ob-
tain gi (m′i,m−i) ≥ gi (m), which yields a contradiction. Furthermore, any i /∈ H
if H 6= N , or else any i, can switch mi =

(
pi, xii

)
to m′i =

(
pi, 0

)
. Since in

(m′i,m−i) there are agents who report strongly truthful messages for u, it follows
that for some x ∈ F (u) and some p ∈ πF (x, u), the set Nu ((m′i,m−i) ; (x, p)) is
non-empty. Among the pairs (x, p) in F (u) × πF (x, u), take any pair

(
x0, p0

)
such

that #Nu
(
(m′i,m−i) ;

(
x0, p0

))
≥ #Nu ((m′i,m−i) ; (x, p)) for all pairs (x, p) in F (u) ×

πF (x, u). Note that Nu
(
(m′i,m−i) ;

(
x0, p0

))
6= N . If #Nu

(
(m′i,m−i) ;

(
x0, p0

))
≥

#Nu∗ ((m′i,m−i) ; (x∗, p∗)) for each (u∗, x∗, p∗) in UN×F (u∗)×πF (x∗, u∗), then (m′i,m−i)
falls into Rule 5.1 and agent i obtains gi (m′i,m−i) > gi (m), which produces a contra-
diction. Otherwise, suppose that there exists a triple

(
u1, x1, p1

)
, with x1 ∈ F

(
u1
)
and

p1 ∈ πF
(
x1, u1

)
, such that #Nu1

(
(m′i,m−i) ;

(
x1, p1

))
> #Nu

(
(m′i,m−i) ;

(
x0, p0

))
. If

#Nu1
(
(m′i,m−i) ;

(
x1, p1

))
≥ #Nu∗ ((m′i,m−i) ; (x∗, p∗)) for each (u∗, x∗, p∗) in UN ×

F (u∗) × πF (x∗, u∗), then (m′i,m−i) falls into Rule 5.1 and agent i obtains a prof-
itable deviation, which is a contradiction. And so on. After a finite number l of
iterations, with #Nu

(
(m′i,m−i) ;

(
x0, p0

))
≤ l < n, we can find a triple

(
ul, xl, pl

)
such that #Nul

(
(m′i,m−i) ;

(
xl, pl

))
≥ #Nu∗ ((m′i,m−i) ; (x∗, p∗)) for each (u∗, x∗, p∗) in

UN × F (u∗) × πF (x∗, u∗). Therefore, (m′i,m−i) falls into Rule 5.1 and agent i obtains
a profitable deviation, which is a contradiction.
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thereby yielding a contradiction. Therefore, m is such that there is only
one agent i who announces xii = 0. Moreover, suppose that m is such
that #Nu′ (m; (x′, p′)) < n − 1. Take an arbitrary j such that j 6= i
and j /∈ Nu′ (m; (x′, p′)). By changing mj into m′j =

(
p′, x′j

)
such that

j ∈ Nu′
((
m−j,m

′
j

)
; (x′, p′)

)
, j induces Rule 5.1 and obtains

gj
(
m−j,m

′
j

)
=

x′j

(n+ 1)−#Nu′
((
m−j,m′j

)
; (x′, p′)

) > gj (m) ,

which produces a contradiction. Therefore, m is such that there is only one
agent i who announces xii = 0, the set Nu′ (m; (x′, p′)) has cardinality equal
to n− 1 and

g (m) =

(
x′1
2
, ...,

x′n
2

)
.

By changing mi into m′i = (p′, x′i) with i ∈ Nu′ ((m−i,m
′
i) ; (x′, p′)), i induces

Rule 1 and obtains gi (m−i,m′i) = x′i, which again yields a contradiction.
Since H is arbitrary, it follows that F (u) = NA

(
γ,<u,H

)
for each H.

Finally, since u is arbitrary, the statement follows.

Proof of Theorem 2. Suppose all the hypotheses of the statement hold.
For the sake of notational parsimony, let U × . . .× U︸ ︷︷ ︸

n times

≡ Ū .

Claim 1 Let (u, x) ∈ Ū ×W (u) be given. The set ΠW (x, u) in (3) is never
empty. Furthermore, it consists solely of Walrasian equilibrium prices for x,
that is, if p ∈ ΠW (x, u), then p · xi = p · ωi for each i.

Proof of Claim 1. Note that since W is defined on Ū , if
(
x, pW

)
is a

Walrasian equilibrium for u, then the set W−1
!

(
x, pW

)
defined in (2) is never

empty. From this observation, it can easily be seen that the set ΠW (x, u)
is non-empty. To see that ΠW (x, u) consists solely of Walrasian equilibrium
prices for x, take an arbitrary p ∈ Π (x, u) such that for some i, p ·xi 6= p ·ωi.
Then, (x, p) is not a Walrasian equilibrium for any u′ in Ū . It follows that
W−1

! (x, p) is empty and so p is not in ΠW (x, u). Since p is arbitrary, the
statement follows.

Since the pair (u, x) ∈ Ū × W (u) in Claim 1 is arbitrary, the sets
πW (x, u) possesses the following property:

πW (x, u) = ΠW (x, u) for each (u, x) ∈ Ū ×W (u) ,
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and for each p ∈ πW (x, u) and each i, the set ΛW
i (x, p) coincides with the

constrained Walrasian budget set20:

ΛW
i (x, p) ≡

⋂
u′∈W−1! (x,p)

L (xi, u
′
i) = {yi ∈ Q | p · yi ≤ p · ωi} . (8)

Next, we show that W satisfiesMP-SH. For, let H and (p, x) ∈ ∆×Qn

be given. Since MP-SH contains four parts, we proceed by breaking the
proof into a series of claims.

Claim 2 W satisfies MP-SH(i).

Proof of Claim 2. Suppose (p, x) is such that IW (p, x) = N . Define the
allocation z (p, x) as follows:

z (p, x) =

{
x if

∑
xi = Ω

0 otherwise.
(9)

It is clear that zi (p, x) ∈ ΛW
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
for each i. Therefore,

W satisfiesMP-SH(i).

Claim 3 W satisfies MP-SH(ii).

Proof of Claim 3. Suppose that 1 ≤ #IW (p, x) ≤ n − 1. Define the
allocation z̄ (p, x) as follows: For each i,

z̄i (p, x) = 0. (10)

It follows easily from the above definition that
∑

z̄i (p, x) ≤ Ω and that

z̄i (p, x) ∈ ΛW
i

((
Ω−

∑
j 6=i xj, x−i

)
, p
)
for each i. We conclude that W

satisfiesMP-SH(ii).

Claim 4 W satisfies MP-SH(iii).

20The constrained Walrasian budget set is the intersection of the standard budget set
(defined by p and ωi) with Q.
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Proof of Claim 4. Define the functions z and z̄ as they are defined in the
proofs of Claims 2-3. Fix an arbitrary i. Define the real-valued function
zi (·; p, x−i) as follows: For each (p′, x′i),

1. If (p′, x′i) is strongly truthful for some u
′ and i ∈ IW (p, (x′i, x−i)), then

zi ((p
′, x′i) ; (p, x−i)) =


Ω−

∑
j 6=i xj if p′ 6= p

zi (p, x) if (p′, x′i) = (p, xi) and IW (p, x) = N
z̄i (p, x) if p′ = p and 1 ≤ #IW (p, (x′i, x−i)) ≤ n− 1

(11)

2. Otherwise, zi ((p′, x′i) ; (p, x−i)) = 0.

Given the definitions in (9)-(10) and given the above definition of zi (·; p, x−i),
one easily checks that W satisfiesMP-SH(iii).

Claim 5 W satisfies MP-SH(iv).

Proof of Claim 5. Define the functions z, z̄ and zi as they are defined in
the proofs of Claims 2-4. Fix an arbitrary u. Suppose that IW (p, x) = N ,

ΛW
k

((
Ω−

∑
j 6=k xj, x−k

)
, p
)
⊆ L (zk (p, x) , uk) for each k, and z (p, x) /∈

W (u). Given the definition of z (p, x) in (9), the only case to consider is∑
xi = Ω. Then, in this case, z (p, x) = x, and so, by definitions, (x, p) is a

Walrasian equilibrium and p ∈ πW (x, u′) for some u′.
Moreover, since ΛW

k (x, p) ⊆ L (x, uk) for each k, z (p, x) = x ∈ W (u′) \W (u)
implies that there is an agent k for whom xk /∈ arg maxyi∈R`+: p·yk≤p·ωk uk (yk).
However, since xk ∈ arg maxyi∈Q: p·yk≤p·ωk uk (yk) by ΛW

k (x, p) ⊆ L (x, uk),(
arg maxyi∈R`+: p·yk≤p·ωk uk (yk)

)
∩ Q = ∅ holds, which suggests that p can-

not be a Walrasian equilibrium price vector at u. Thus, for any i ∈ H, the
pair (p, xi) is not strongly truthful for u. This verifies MP-SH(iv.a). Let
(p′, x′i) be any strongly truthful pair for u. Then, p

′ 6= p. By IW (p, x) =
N , i ∈ IW (p, (x′i, x−i)). By definition of zi (·; (p, x−i)) in (11), we have
zi ((p

′, x′i) ; (p, x−i)) = xi, thus W satisfiesMP-SH(iv.b).

The proof concludes by observing that the set H and the pair (p, x) were
arbitrarily taken.
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