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Abstract

Noting that a full characterization of Nash-implementation is given

using a canonical-mechanism and Maskin’s theorem (Maskin, 1999)

is shown using a mechanism with Saijo’s type of strategy space re-

duction (Saijo, 1988), this paper fully characterizes the class of Nash-

implementable social choice correspondences (SCCs) by mechanisms

endowed with Saijo’s message space specification - s-mechanisms. This

class of SCCs is further shown to be equivalent to the class of Nash-

implementable SCCs, though any further ‘strategy space reduction’

mechanism breaks this equivalent relationship down.
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1 Introduction

In Nash implementation theory, it isMaskin’s Theorem (Maskin, 1999) which

shows that when the planner faces at least three agents, a social choice corre-

spondence (SCC) is implementable in (pure-strategy) Nash equilibria (hence-

forth, Nash-implementable) if it satisfies Maskin monotonicity and no-veto

power ; conversely, any Nash-implementable SCC is Maskin-monotonic. Two

issues pertaining to this theorem stand out. First, it does not provide a

complete characterization of Nash-implementable SCCs, since no-veto power

is not necessary for Nash implementation. Second, a canonical mechanism

proposed in this theorem, which requires each agent to report a preference

profile, a feasible social outcome, and an integer, is not so attractive. This

is because the message space of this mechanism is rather large and announc-

ing all other agents’ preferences is undesirable in terms of the informational

efficiency of decentralized decision making (on this point see, for instance,

Hurwicz, 1960).

Moore and Repullo (1990) address the first issue by providing, without

any domain restriction, a necessary and sufficient condition, called Condition

μ, for Nash implementability of SCCs in societies with more than two agents.1

In contrast to the first issue, the issue of informational efficiency is addressed

by Saijo (1988), who shows that a mechanism with strategy-space reduction

(henceforth, s-mechanism) suffices to guarantee Maskin’s Theorem. Note
that, in s-mechanisms, each agent is requested to announce, in addition to a
feasible social outcome and an integer, her own and her neighbor’s preferences

solely. Yet, as Moore and Repullo (1990) also use a canonical mechanism for

showing the full characterization and Saijo (1988) does not discuss a full

characterization of Nash implementation, it leaves unclear not only whether

Moore and Repullo’s result indispensably relies on canonical mechanisms

but also whether s-mechanisms can Nash-implement any other SCC than

Maskin-monotonic and no-veto power ones.

In this paper, we address the issue of what constitutes the necessary and

sufficient condition for Nash implementation by s-mechanisms. We introduce
a class of new conditions (labelled, {Condition μsr}r=1,...,n−2) which fully char-

1Note that, for two person societies, Moore and Repullo (1990) and Dutta and Sen

(1991) independently provided necessary and sufficient conditions for Nash implemen-

tation, whereas even in societies with more than two agents, there are other works on

complete characterizations of Nash implementation under some domain restrictions, such

as Danilov (1992) and Yamato (1992).
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acterize the class of SCCs Nash-implemantable by s-mechanisms. Each of
Condition μsr turns out to be equivalent to Condition μ. The same issue is
addressed by introducing an alternative condition, Condition Ms, which is

similar to ConditionM appeared in Sjöstrom (1991); a new characterization

of Nash-implementable SCCs via s-mechansims is provided by using Condi-
tion Ms. It is also shown that Condition Ms is equivalent to Condition μsr
for each r = 1, . . . , n−2 (and so to Condition μ). Moreover, we show that s-
mechanisms constitute the ‘lower-bound of Nash-implementing mechanisms’

in the sense that no further strategy space reduction can preserve the Moore

and Repullo (1990) full characterization of Nash implementation.

It may be worth mentioning that all of our characterization results are

obtained by restricting the class of available s-mechanisms to those satisfying
forthrightness, which is a variation of those introduced in Dutta et al. (1995),

Saijo et al. (1996), and Tatamitani (2001).2 As a result, the outcome of an

equilibrium message profile of our mechanisms is ‘easy’ to compute and the

problem of information smuggling is avoided.

The paper is organized as follows. Section 2 describes the formal envi-

ronment. Section 3 reports our main characterization result via Condition

μsr, whereas Section 4 reports an alternative characterization result via Con-
dition Ms. Section 5 shows that the lower-bound property of s-mechanisms
to reserve Nash implementation. Section 6 concludes.

2 Preliminaries

The set of (social choice) environments is (N,X,Rn), where N ≡ {1, ..., n}
is a set of n ≥ 3 agents, X ≡ {x, y, z, ...} is the set of attainable alter-
natives (or outcomes), and Rn is the set of admissible preference profiles

(or states of the world). Henceforth, we assume that the cardinality of X
is #X ≥ 2. Let R (X) be the set of all complete preorders on X.3 We

assume that Rn ≡ R1 × ...×Rn is a non-empty subset of the n-fold Carte-
sian productRn (X) ≡R (X)× ....×R (X)| {z }

n-times

. An element of Rn is denoted by

2Note that the forthrightness condition is indispensable for showing Theorem 1, a main

result of this paper.
3A complete preorder R ∈ R (X) is a complete and transitive binary relation. A

relation R on X is complete if, for all x, x0 ∈ X, (x, x0) ∈ R or (x0, x) ∈ R; transitive if,
for all x, x0, x00 ∈ X, if (x, x0) ∈ R and (x0, x00) ∈ R , then (x, x00) ∈ R.

3



R ≡ (R1, ..., Rn), where its `-th component is R` ∈ R`, for each ` ∈ N . For
any preference profile R ∈ Rn and any ` ∈ N , let R−` be the list of elements
of R for all agents except `, i.e., R−` ≡ (R1, ..., R`−1, R`+1, ..., Rn). Given a
list R−` and R` ∈ R`, we denote by (R−`, R`) the preference profile consisting
of these R` and R−`. For any preference profile R ∈ Rn and any S ⊆ N , let
R−S be the list of elements of R for all agents in N\S. Given a list R−S and
RS ∈ ×`∈SR`, we denote by (R−S, RS) the preference profile consisting of
these RS and R−S. For any (R`, x) ∈ R`×X, agent `’s weakly lower contour
set of R` at x is given by L (R`, x) ≡ {y ∈ X| (x, y) ∈ R`}. For each ` ∈ N
and each R` ∈ R`, maxR` X ≡ {x ∈ X| (x, y) ∈ R` for all y ∈ X}.
We also assume that N and X are fixed throughout the following discus-

sion, so that the set of environments is boiled down to Rn. A social choice

correspondence (SCC) is a correspondence F : Rn ³ X with F (R) 6= ∅ for
all R ∈ Rn.

A mechanism (or game-form) is a pair γ ≡ (M, g), where M ≡ M1 ×
... ×Mn, and g : M → X is the outcome function. Denote a generic mes-

sage (or strategy) for agent ` by m` ∈ M` and a generic message profile

by m = (m1, ...,mn) ∈ M . For any m ∈ M and ` ∈ N , let m−` ≡
(m1, ...,m`−1,m`+1, ...,mn). Let M−` ≡ ×j∈N\{`}Mj. Given m−` ∈ M−`
and m` ∈ M`, denote by (m`,m−`) the message profile consisting of these
m` and m−`. For any m ∈ M and S ⊆ N , let m−S ≡ (m`)`∈N\S. Let
M−S ≡ ×j∈N\SMj. Given m−S ∈ M−S and mS ∈ MS, denote by (mS,m−S)
the message profile consisting of these mS and m−S. Given R ∈ Rn and

γ = (M, g), the pair (γ, R) constitutes a (non-cooperative) game. Given
a game (γ, R), m ∈ M is a (pure strategy) Nash equilibrium of (γ, R) if
and only if, for all ` ∈ N , (g (m) , g (m0

`,m−`)) ∈ R` for all m0
` ∈ M`. Let

NE (γ, R) denote the set of Nash equilibria of (γ, R), whereas denote the set
of Nash equilibrium outcomes of (γ, R) by NA (γ, R) ≡ g (NE (γ, R)).
A mechanism γ = (M, g) implements F in Nash equilibria, or simply

Nash-implements F , if and only if NA (γ, R) = F (R) for all R ∈ Rn. An

SCC F is Nash-implementable if there is such a mechanism.
Moore and Repullo (1990) show that, under the society with more than

two agents, the following condition is the necessary and sufficient condition

for any SCC to be Nash-implemetable.

Condition μ (for short, μ). An SCC F satisfies Condition μ if there exists a
set Y ⊆ X, and for all R ∈ Rn and for all x ∈ F (R), there is a profile of sets

4



(C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x)∩ Y for all ` ∈ N ,4 and for
any R∗ ∈ Rn:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for each i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).5

3 Main Result

Following Saijo (1988), we focus on mechanisms in which each agent reports

her own preference R` ∈ R`, her neighbor’s preference R`+1 ∈ R`+1, an

outcome x ∈ Y ⊆ X and an integer ¦ ∈ N .
Definition 1. A mechanism γ = (M,g) is s-mechanism if, for any ` ∈ N ,
M` ≡ R` ×R`+1 × Y ×N , where Y ⊆ X and `+ 1 = 1 if ` = n.

Definition 2. An SCC F is Nash-implementable by an s-mechanism if there

exists an s-mechanism γ = (M, g) such that, for all R ∈ Rn:

i) F (R) = NA (γ, R); and
ii) for all x ∈ F (R), ifm` = (R`, R`+1, x, ¦) ∈M` for all ` ∈ N , with `+1 = 1
if ` = n, then m ∈ NE (γ, R) and g (m) = x.
In Definition 2, it is required not only that all F -optimal outcomes coin-

cide with Nash equilibrium outcomes of the game defined by an s-mechanism
for any state of the world, but also that such an s-mechanism satisfies forth-
rightness. It was originally introduced in economic environments by Dutta,

Sen, and Vohra (1995) and Saijo, Tatamitani, and Yamto (1996), and it has

desired implications. A mechanism satisfying forthrightness is simple in the

sense that it is easy to compute the outcome of an equilibrium strategy pro-

file. Moreover, if a mechanism fails to satisfy this condition, it is subject

to information smuggling, that is, the strategy space can be reduced to an

arbitrary smaller dimensional space. Thus, any Nash-implementable SCC

seems to be Nash-implementable by s-mechanisms, while any SCC that is
Nash-implementable by s-mechanisms seems to be Nash-implementable by
a ‘further strategy space reduction mechanism’ like self-relevant mechanisms

4Weak set inclusion is denoted by ⊆.
5We refer to the condition that requires only one of the conditions (i)—(iii) in Condition

μ as Conditions μ(i)—μ(iii) each. Note that Condition μ implies Conditions μ(i)—μ(iii),
but the converse is not true. We use similar conventions below
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(Tatamitani, 2000), unless forthrightness is requested. This indicates that

without forthrightness, there is no legitimate reason for characterizing the

class of Nash-implementable SCCs by s-mechanisms. Hence, forthrightness
should be requested in Definition 2.

Using the approach developed by Moore and Repullo (1990), we now

introduce a class of conditions, labelled {Condition μsr}, to characterize Nash
implementability by s-mechanisms. For each r = 1, . . . , n−2, let us introduce
the following.

Condition μsr (for short, μ
s
r): An SCC F satisfies Condition μsr if there exists

a set Y ⊆ X, and for all R ∈ Rn and all x ∈ F (R), there is a profile of sets¡
C`
¡
R−{`+1,...,`+r}, x

¢¢
`∈N such that x ∈ C`

¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R`, x)∩Y
for all ` ∈ N , with `+ 1 = 1 if ` = n, and for all R∗ ∈ Rn:

(i) if C`
¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci

¡
R−{i+1,...,i+r}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y)
for all ` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗),
(iv) for all ` ∈ N with R∗−{`+1,...,`+r} = R−{`+1,...,`+r} and x ∈ F (R∗),

C`
³
R∗−{`+1,...,`+r}, x

´
= C`

¡
R−{`+1,...,`+r}, x

¢
.

Proposition 1. An SCC F on Rn satisfies Condition μsr for each r =
1, . . . , n− 2 if it is Nash-implementable by an s-mechanism.
Proof. Let an SCC F on Rn be Nash-implementable by an s-mechanism.
Let γ = (M, g) be such an s-mechanism. Take any r = 1, . . . , n− 2. Define
Y ≡ g (M). For all R ∈ Rn and x ∈ F (R), there exists an m ∈ NE (γ, R)
such that g (m) = x and m` =

¡
R`, R`+1, x, k

`
¢
for all ` ∈ N , by Definition

2(ii). Take any ` ∈ N and define

F−1
¡
R−{`,...,`+r−1}, x

¢
≡ ©

R0{`,...,`+r−1} ∈ R` × . . .×R`+r−1|x ∈ F
¡
R0{`,...,`+r−1}, R−{`,...,`+r−1}

¢ª
.

Then, for any R0{`,...,`+r−1} ∈ F−1
¡
R−{`,...,`+r−1}, x

¢
, there exist

m0
{`,...,`+r−1} =

¡¡
R0`, R

0
`+1, x, k

`
¢
, . . . ,

¡
R0`+s, R

0
`+s+1, x, k

`
¢
, . . . ,

¡
R0`+r−1, R`+r, x, k

`
¢¢
,

where 1 ≤ s ≤ k − 2, and an m0
`−1 =

¡
R`−1, R0`, x, k

`−1¢ such that
g
¡
m0
{`,...,`+r−1},m

0
`−1,m−{`−1,`,...,`+r−1}

¢
= x ∈ NA ¡γ, ¡R0{`,...,`+r−1}, R−{`,...,`+r−1}¢¢ ,
6



by Definition 2(ii). Therefore, for any R0{`,...,`+r−1} ∈ F−1
¡
R−{`,...,`+r−1}, x

¢
,

there is an

m0
{`,...,`+k−1} =

¡¡
R0`, R

0
`+1, x, k

`
¢
, . . . ,

¡
R0`+s, R

0
`+s+1, x, k

`
¢
, . . . ,

¡
R0`+r−1, R`+r, x, k

`
¢¢

such that g
³
M`−1,m0

{`,...,`+r−1},m−{`−1,`,...,`+r−1}
´
⊆ L (R`−1, x). Define

C`−1
¡
R−{`,...,`+r−1}, x

¢
≡ ∪

m0
{`,...,`+r−1}=((R0`,R0`+1,x,k`),...,(R0`+r−1,R`+r,x,k`));

R0{`,...,`+r−1}∈F−1(R−{`,...,`+r−1},x)

g
¡
M`−1,m0

{`,...,`+r−1},m−{`−1,`,...,`+r−1}
¢

(1)

for each ` − 1 ∈ N , with ` = 1 if ` − 1 = n. Then, by definition, x ∈
C`
¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R`, x) ∩ Y for all ` ∈ N . Moreover, F satisfies

μsr(iv) by (1). Next, we show that F satisfies Conditions μ
s
r(i)-μ

s
r(iii). Take

any R∗ ∈ Rn.

Suppose that C`
¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N . Then, it
follows from (1) that g (M`,m−`) ⊆ L (R∗` , x) for all ` ∈ N . We conclude
that g (m) = x ∈ NA (γ, R∗) = F (R∗). Hence, μsr(i) holds.
For each i ∈ N , let y ∈ Ci

¡
R−{i+1,...,i+r}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y)
for all ` ∈ N\ {i}. It follows from (1) that there is an m∗{i+1,...,i+r} ∈
M{i+1,...,i+r} such that y ∈ g

³
Mi,m

∗
{i+1,...,i+r},m−{i,i+1,...,i+r}

´
⊆ Ci

¡
R−{i+1,...,i+r}, x

¢
so that g

³
m∗i ,m

∗
{i+1,...,i+r},m−{i,i+1,...,i+r}

´
= y for some m∗i ∈ Mi. More-

over, g (M) ⊆ L (R∗` , y) for all ` ∈ N\ {i}. It follows that y ∈ NA (γ, R∗) =
F (R∗). Hence, μsr(ii) holds.
Finally, if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ g (M) ⊆ L (R∗` , y)

for all ` ∈ N . Thus, there is an m∗ ∈M such that g (m∗) = y, which implies
that y ∈ NA (γ, R∗) = F (R∗). Hence, μsr(iii) holds. We conclude that F
satisfies μs.

To prove sufficiency of Condition μsr we devise a class of s-mechanims
which are similar but not identical to that used by Saijo (1988). Likely

Saijo’s mechanism, in our s-mechanisms agents make cyclic announcement
of strategies and the preference profile, especially the deviator’s preference

relation, is determined without relying upon the deviator’s announcement.

While the proof of Saijo (1988) exploits in full the information coming from
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the cyclic announcement of strategies, we do not follow this course of action

here as we can make use of the novelty of our Condition μsr(iv).

Proposition 2. For each r = 1, . . . , n− 2, an SCC F on Rn satisfying μsr
is Nash-implementable by an s-mechanism.

Proof. Let γ ≡ (M, g) be an s-mechanism. Suppose that F on Rn satisfies

μsr for some r = 1, . . . , n − 2. Fix any m ∈ M , R ∈ Rn, and x ∈ X, and
let m` =

¡
R``, R

`
`+1, x

`, k`
¢ ∈ M`, where ` + 1 = 1 if ` = n, and where the

announcement of agent ` ∈ N about agent ` + 1’s preferences is R``+1. We
say that the message profile m ∈M is:

(i) consistent with R and x if, for all ` ∈ N , R`` = R`−1` = R` and x
` = x,

where `− 1 = n if ` = 1;
(ii) m−i quasi-consistent with x and R, where i ∈ N , if for all ` ∈ N , x` = x,
and for all ` ∈ N\{i, i + 1}, R`` = R`−1` = R`, R

i−1
i = Ri, R

i+1
i+1 = Ri+1, and

[Rii 6= Ri or Rii+1 6= Ri+1], where j − 1 = n if j = 1 for j ∈ {i, `};
(iii)m−i consistent with x and R, where i ∈ N , if for all ` ∈ N\{i}, x` = x 6=
xi, and for all ` ∈ N\{i, i+1}, R`` = R`−1` = R`, R

i−1
i = Ri and R

i+1
i+1 = Ri+1,

where j − 1 = n if j = 1 for j ∈ {i, `}.
Define the outcome function g :M → X as follows: For any m ∈M ,

Rule 1: m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢, then g (m) = x.
Rule 2: For some i ∈ N , m−i is quasi-consistent with x and R̄ ∈ Rn, where

x ∈ F ¡R̄¢, then g (m) = x.
Rule 3: For some i ∈ N , m is m−i consistent with x and R̄ ∈ Rn, where

x ∈ F ¡R̄¢, and Ci ¡R̄−{i+1,...,i+r}, x¢ 6= Y , with i+ 1 = 1 if i = n, then
g (m) =

½
xi if xi ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢
x otherwise

.

Rule 4: Otherwise, g (m) = x`
∗(m) where `∗ (m) ≡ P

i∈N
ki (mod n).6

Since F satisfies μsr, it follows that, for any R ∈ Rn and any x ∈ F (R),
x ∈ Y . We show that γ = (M, g) Nash-implements F . Take any R ∈ Rn.

To show that F (R) ⊆ NA (γ, R), let x ∈ F (R) and suppose that, for all
` ∈ N , m` = (R`, R`+1, x, ¦), where ¦ ∈ N is an arbitrary agent index. Rule

1 implies that g (m) = x. By the definition of g we have that any deviation
of agent ` ∈ N will get her to an outcome in C`

¡
R−{`+1,...,`+r}, x

¢
, so that

6If the remainder is zero the winner of the game is agent n.
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g (M`,m−`) ⊆ C`
¡
R−{`+1,...,`+r}, x

¢
. Since C`

¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R`, x),
it follows that such deviations are not profitable, and so m ∈ NE (γ, R).
Furthermore, this guarantees the condition of Definition 2(ii).

Conversely, to show that NA (γ, R) ⊆ F (R), let m ∈ NE (γ, R). Con-
sider the following cases.

Case 1: m falls into Rule 1.

Then, m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Thus,
g (m) = x. Take any ` ∈ N . Suppose that C`

¡
R̄−{`+1,...,`+k}, x

¢ 6= Y . For any
y ∈ C`

¡
R̄−{`+1,...,`+r}, x

¢ \ {x}, changing m` to m
∗
` =

¡
R``, R

`
`+1, y, ¦

¢ ∈ M`,

agent ` can obtain y = g (m∗` ,m−`) viaRule 3. In case thatC`
¡
R̄−{`+1,...,`+r}, x

¢
=

Y , agent ` can attain any y ∈ Y viaRule 4. Therefore, C`
¡
R̄−{`+1,...,`+r}, x

¢
=

g (M`,m−`) for all ` ∈ N . Asm ∈ NE (γ, R)we have thatC`
¡
R̄−{`+1,...,`+r}, x

¢ ⊆
L (R`, x) for all ` ∈ N . μsr(i) implies x ∈ F (R).
Case 2: m falls into Rule 2.

Then m is m−i quasi-consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢.
Thus, g (m) = x. We proceed according the following sub-cases: 1) Rii 6= R̄i
and Rii+1 6= R̄i+1, and 2) Rii 6= R̄i and Rii+1 = R̄i+1.7
Sub-case 2.1. Rii 6= R̄i and Rii+1 6= R̄i+1
As any ` ∈ N\ {i} can attain any y ∈ Y \ {x} by inducing Rule 4

and m ∈ NE (γ, R), we have that x ∈ maxR` Y . Next, take any y ∈
Ci
¡
R̄−{i+1,...,i+r}, x

¢ \ {x}. Suppose thatCi ¡R̄−{i+1,...,i+r}, x¢ 6= Y . By chang-
ing mi to m

∗
i =

¡
Rii, R

i
i+1, y, ¦

¢ ∈ Mi, agent i can obtain y = g (m∗i ,m−i),
via Rule 3. In the case that Ci

¡
R̄−{i,i+1}, x

¢
= Y , by changing mi to

m∗ı́ =
¡
Rii, R

i
i+1, y, k

i
¢ ∈ Mi, agent i can attain y = g (m∗i ,m−i) with ap-

propriately choosing ki. It follows that Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i).
Moreover, Ci

¡
R̄−{i+1,...,i+r}, x

¢ ⊆ L (Ri, x) as m ∈ NE (γ, R). Either μsr(ii)
or μsr(iii) implies x ∈ F (R).
Sub-case 2.2. Rii 6= R̄i and Rii+1 = R̄i+1
Let Rii = R

0
i. We distinguish whether x ∈ F

¡
R̄0
¢
where R̄0 ≡ ¡R̄−i, R0i¢

or not. Suppose that x /∈ F ¡R̄0¢. Then the same reasoning used above
for sub-case 2.1 carries over into this sub-case so that x ∈ F (R). Other-
wise, let x ∈ F ¡R̄0¢. Then, i − 1 or i is the potential deviator. Agent
` ∈ N\ {i− 1, i} can attain any y ∈ Y \ {x} by inducing Rule 4 so that
x ∈ maxR` Y as m ∈ NE (γ, R). Consider agent i − 1. Note that, by

7The sub-case Rii = R̄i and R
i
i+1 6= R̄i+1 is not explicitly considered as it can be proved

similarly to the sub-case 2.2 shown below.
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μsr(iv), Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
= Ci−1

³
R̄0−{i,...,i+r−1}, x

´
holds. Take any y ∈

Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
= Ci−1

³
R̄0−{i,...,i+r−1}, x

´
with y 6= x. Suppose that

Ci−1
¡
R̄−{i,...,i+r−1}, x

¢ 6= Y . By changingmi−1 tom∗i−1 =
¡
Ri−1i−1, R

i−1
i , y, ¦¢ ∈

Mi−1, agent i − 1 can obtain y = g
¡
m∗i−1,m−(i−1)

¢
via Rule 3. In the case

that y ∈ Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
= Y \ {x}, by changing mi−1 to m∗i−1 =¡

Ri−1i−1, R
i−1
i , y, ki−1

¢ ∈ Mi−1, agent i − 1 can attain y = g
¡
m∗i−1,m−(i−1)

¢
with appropriately choosing ki−1. It follows that Ci−1

¡
R̄−{i,...,i+r−1}, x

¢ ⊆
g
¡
Mi−1,m−(i−1)

¢ ⊆ L (Ri−1, x) as m ∈ NE (γ, R). Consider agent i. Again,
take any y ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢ \ {x}. Suppose that Ci ¡R̄−{i+1,...,i+r}, x¢ 6=
Y . By changing mi to m

∗
ı́ =

¡
Rii, R

i
i+1, y, ¦

¢ ∈ Mi, agent i can obtain y =
g (m∗i ,m−i) via Rule 3. In the case that y ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢
= Y \ {x},

by changing mi to m
∗
i =

¡
Rii, R

i
i+1, y, k

i
¢ ∈ Mi, agent i can attain y =

g (m∗i ,m−i)with appropriately choosing k
i. It follows thatCi

¡
R̄−{i+1,...,i+r}, x

¢ ⊆
g (Mi,m−i) ⊆ L (Ri, x) as m ∈ NE (γ, R). Therefore, x ∈ F (R) by μsr(i).

Case 3: m falls into Rule 3.

Then m is m−i consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. There-
fore, Ci

¡
R̄−{i+1,...,i+r}, x

¢ 6= Y . First, we show that Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆
g (Mi,m−i). For any xi ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢ \ {x}, considerm∗i = ¡Rii, Rii+1, xi, ¦¢.
Then, Rule 3 implies that g (m−i,m∗i ) = x

i. On the other hand, to attain x
agent i can induce Rule 1 by changing mi to m

∗
i =

¡
R̄i, R̄i+1, x, ¦

¢
so that

g (m−i,m∗i ) = x. Hence, Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i).
Next, we claim that g (M`,m−`) = Y for any ` ∈ N\ {i}. We proceed

according to whether #Y = 2 and n = 3 or not.

Sub-case 3.1. not[#Y = 2 and n = 3]
Take any ` ∈ N\ {i}. Suppose that #Y > 2. By the definition of g,

we have that Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}. Otherwise, let #Y = 2.
Then, n > 3. Changing x to x` = xi, agent ` can make#

©
` ∈ N |x` = xª ≥ 2

and #
©
` ∈ N |x` 6= xª ≥ 2. As the outcome is determined by Rule 4, agent

` can attain any outcome in Y by appropriately choosing k`. Therefore,
Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}.
Sub-case 3.2. #Y = 2 and n = 3
Then, let N = {i− 1, i, i+ 1} with i + 1 = 1 if i = n and i − 1 = n if

i = 1. As Ci
¡
R̄−{i+1,...,i+r}, x

¢ 6= Y it follows that g (m) = x. We proceed
according to whether for some agents `, `0 ∈ N , with ` 6= `0, #R` 6= 1 and
#R`0 6= 1 or not.
Sub-sub-case 3.2.1. For some `, `0 ∈ N , with ` 6= `0, #R` 6= 1 and #R`0 6= 1
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In this case, agent i− 1 (resp., i+1) can always induce the modulo game
by appropriately changing the announcement of her own preference or that of

her successor and by carefully choosing the outcome announcement. Finally,

to attain xi, agent i− 1 (resp., i+ 1) has only to adjust the integer index so
that agent i becomes the winner of the modulo game.

Sub-sub-case 3.2.2. For all `, `0 ∈ N , with ` 6= `0, #R` = 1 or #R`0 = 1
Suppose that, for all `∗ ∈ {i− 1, i, i+ 1}, #R`∗ = 1. As m falls into

Rule 3, it follows that x ∈ F (R) = F
¡
R̄
¢
. Otherwise, let us consider the

case that, for some `∗ ∈ {i− 1, i, i+ 1}, #R`∗ 6= 1. If either #Ri−1 > 1 or
#Ri > 1, then agent i − 1 can induce the modulo game by changing mi−1
into either m∗i−1 =

¡
Ri−1i−1, R̄i, x, k

i−1¢ with Ri−1i−1 6= R̄i−1 (if #Ri−1 > 1)
or m∗i−1 =

¡
R̄i−1, Ri−1i , xi, ki−1

¢
with Ri−1i 6= Rii (if #Ri > 1). To at-

tain xi, agent i − 1 has only to choose an appropriate ki−1 so that i =
`∗
¡
m−(i−1),m∗i−1

¢
. Therefore, Y ⊆ g

¡
Mi−1,m−(i−1)

¢
. Then, let #Ri−1 =

#Ri = 1. Agent i − 1 can change mi−1 into m∗i−1 =
¡
R̄i−1, R̄i, xi, ki−1

¢
.

Suppose that xi /∈ F ¡R̄i−1, R̄i, Rii+1¢. Then, Rule 4 applies and agent i− 1
can attain xi by adjusting ki−1 so that i − 1 = `∗

¡
m−(i−1),m∗i−1

¢
. Other-

wise, let xi ∈ F ¡R̄i−1, R̄i, Rii+1¢. If Ci+1 ¡R̄i, Rii+1, xi¢ = {xi}, Rule 3 implies
g
¡
m−(i−1),m∗i−1

¢
= xi. In the case that Ci+1

¡
R̄i, R

i
i+1, x

i
¢
= Y , the outcome

is determined by Rule 4, so that by adjusting ki−1 agent i− 1 can attain xi.
By similar reasoning, it can be shown that agent i + 1 can attain xi ∈ Y .
Therefore, Y ⊆ g (M`,m−`) for ` ∈ {i− 1, i+ 1}.
In all the above sub-cases, we obtained Y ⊆ g (M`,m−`) for all ` ∈ N\ {i}.

As m ∈ NE (γ, R) we have that Ci
¡
R̄−{i+1,...,i+k}, x

¢ ⊆ L (Ri, g (m)) and
g (m) ∈ maxR` Y for any ` ∈ N\ {i}, so that g (m) ∈ F (R) by μsr(ii).

Case 4: m falls into Rule 4.

Then, Y ⊆ g (M`,m−`) for all ` ∈ N . Since m ∈ NE (γ, R), it follows
that g (m) ∈ maxR` Y for ` ∈ N . Therefore, g (m) ∈ F (R) by μsr(iii).

From the above propositions, we obtain the following main result.

Theorem 1. An SCC F on Rn is Nash-implementable by an s-mechanism
if and only if it satisfies Condition μsr for each r = 1, . . . , n− 2.
Furthermore, we can see that the class of SCCs Nash-implementable by s-

mechanisms is not a proper subset of the class of Nash-implementable SCCs.

Lemma 1. Let F be an SCC defined on Rn. Then, for each r = 1, . . . , n−2,
Condition μsr is equivalent to Condition μ.
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Proof. Take any r = 1, . . . , n− 2. Let F on Rn be an SCC satisfying Con-

dition μsr. Then, F is Nash-implementable by an s-mechanism via Theorem

1. Therefore, it is Nash-implementable. By Moore and Repullo (1990)’s re-

sult, it follows that F satisfies Condition μ. Conversely, let F be an SCC

satisfying Condition μ. For any ` ∈ N , R ∈ Rn and x ∈ F (R), define the
set C`

¡
R−{`+1,...,`+k}, x

¢
as follows

C`
¡
R−{`+1,...,`+r}, x

¢ ≡ ∪
R0{`+1,...,`+r}∈F−1(R−{`+1,...,`+r},x)

C`
¡¡
R−{`+1,...,`+r}, R0{`+1,...,`+r}

¢
, x
¢
.

(2)

We prove that F satisfies μsr. Let Y = g (M). Moreover, take any R ∈
Rn and x ∈ F (R). It follows from (2) and μ that, for each ` ∈ N , x ∈
C`
¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R`, x)∩Y and C` ¡R−{`+1,...,`+r}, x¢ is well-defined.
Moreover, it follows from (2) that F satisfies μsr(iv). Next, we show that F
meets μsr(i)-μ

s
r(iii). Take any R

∗ ∈ Rn.

Let C`
¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N . Since x ∈ F (R), it
follows from μ and (2) that C` (R, x) ⊆ C`

¡
R−{`+1,...,`+r}, x

¢
for all ` ∈ N .

Then, μ(i) implies that x ∈ F (R∗), as we sought. Therefore, μsr(i) holds.
Let y ∈ Ci

¡
R−{i+1,...,i+r}, x

¢ ⊆ L (R∗i , y) for some i ∈ N and Y ⊆ L (R∗` , y)
for all ` ∈ N\ {i}. As y ∈ Ci

¡
R−{i+1,...,i+r}, x

¢
, it follows from (2) and μ

that y ∈ Ci
³³
R−{i+1,...,i+r}, R0{i+1,...,i+r}

´
, x
´
⊆ Ci

¡
R−{i+1,...,i+r}, x

¢
for some

R0{i+1,...,i+r} ∈ F−1
¡
R−{i+1,...,i+r}, x

¢
. Then, μ(ii) implies that y ∈ F (R∗).

Thus, μsr(ii) is satisfied. Let y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N . Then, μ(iii)
implies that y ∈ F (R∗), and so μsr(iii) is met. We conclude that F satisfies
μsr if it satisfies μ.

From Theorem 1 and Lemma 1, the following corollaries are easily obtained.

Corollary 1. An SCC F on Rn is Nash-implementable by an s-mechanism
if and only if it is Nash-implementable.

Corollary 2. An SCC F on Rn is Nash-implementable by an s-mechanism
if and only if it satisfies Condition μ.

Note that we can also show that for any intermediate strategy space reduc-

tion mechanism between the canonical and the s-mechanisms, Nash imple-
mentation by such an intermediate one is equivalent to Nash implementation.

Indeed, let us consider any intermediate strategy space reduction mechanism,

say q-mechanism, with the strategy spaceM` ≡ R`×R`+1×. . .×R`+q×Y ×N
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for all ` ∈ N , where q = 2, . . . , n − 2.8 Then, it can be shown by a similar
way to the proofs of Propositions 1 and 2, that an SCC satisfies Condition

μsr for each r = q, q + 1, . . . , n − 2 if and only if it is Nash-implementable
by q-mechanisms. Thus, because of Lemma 1, for each q = 2, . . . , n − 2,
an SCC is Nash-implementable by q-mechanisms if and only if it is Nash-
implementable.

4 An alternative characterization

Using the approach developed by Moore and Repullo (1990), we now intro-

duce an alternative condition, labelled Condition Ms, to characterize imple-

mentability by s-mechanisms. The condition can be stated as follows.

Condition Ms (for short, Ms). An SCC F satisfies Ms if there exists a set

Z ⊆ X, and for all R ∈ Rn and for all x ∈ F (R), there is a profile of sets
(C∗` (R`, x))`∈N such that x ∈ C∗` (R`, x) ⊆ L (R`, x) ∩ Z for all ` ∈ N ; and
for all R∗ ∈ Rn:

(i) if C∗` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ C∗i (Ri, x) ⊆ L (R∗i , y) and Z ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Z ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).
Instead of the profile

¡
C`
¡
R−{`+1,...,`+r}, x

¢¢
`∈N introduced in Condition

μsr, the above condition introduces the profile (C
∗
` (R`, x))`∈N which corre-

sponds to the case
¡
C`
¡
R−{`+1,...,`+r}, x

¢¢
`∈N with r = n − 1.9 As for the

profile
¡
C`
¡
R−{`+1,...,`+r}, x

¢¢
`∈N we also show that (C∗` (R`, x))`∈N is well-

defined and can be constructed by using the profile (C` (R, x))`∈N given in
Condition μ. Note that the profile (C∗` (R`, x))`∈N is similar to the profile of
Condition M devised by Sjöstrom (1991). Finally, we show that Condition

Ms is equivalent to Condition μsr.
Before stating our next result, it may be worth mentioning here that

Condition Ms do not include any condition of type of Condition μsr(iv). For
this reason - and in contrast to the proof of Proposition 2-, the proof of

sufficiency of Condition Ms exploits in full the information coming from the

8According to this terminology, q = 1 corresponds to s-mechanisms while q = n − 1
corresponds to canonical mechanisms. Both of the cases are excluded from the naming of

q-mechanisms, since we are interested in intermediate strategy space reduction solely.
9The definition of Condition μsr excludes this case.
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cyclic announcement of strategies. This is done by constructing a mechanism

which turn to be different from the one designed in Proposition 2. Note that

the next result can be shown without imposing forthrightness.

Theorem 2. An SCC F on Rn satisfies Ms if and only if it is Nash-

implementable by an s-mechanism.

Proof. Since the necessity of Condition Ms can be easily obtained by fol-

lowing the proof of the necessity of Condition μ given by Moore and Repullo
(1990) we omit it here.

Conversely, suppose that F satisfies Condition Ms. We show that F is

Nash-implementable via an s-mechanism. For, define the outcome function
g as in Proposition 2 where Rule 3 is replaced by the following one:

Rule 3 ∗: For some i ∈ N , m is m−i consistent with x and R̄ ∈ Rn, where

x ∈ F ¡R̄¢, and C∗i ¡Ri−1i , x
¢ 6= Z, with i− 1 = n if i = 1, then

g (m) =

½
xi if xi ∈ C∗i

¡
Ri−1i , x

¢
x otherwise

.

The proof follows the same arguments as those provided in the proof of

Proposition 2 except for the sub-case 2.2, in which the case x ∈ F ¡R̄0¢ is
considered. Therefore, we provide only the proof of this sub-case while we

omit all others here.

Suppose that m ∈ NE (γ, R) and m falls into Rule 2 such that Rii 6= R̄i
and Rii+1 = R̄i+1. Let R

i
i = R

0
i and x ∈ F

¡
R̄0
¢
where R̄0 ≡ ¡R̄−i, R0i¢. Then,

i− 1 or i is the deviator. Agent ` ∈ N\ {i− 1, i} can attain any y ∈ Z\ {x}
by inducing Rule 4, so that x ∈ maxR` Z as m ∈ NE (γ, R). Consider

agent i − 1. Take any y ∈ C∗i−1
¡
R̄i−1, x

¢
= C∗i−1

¡
Ri−2i−1, x

¢
. Suppose that

C∗i−1
¡
R̄i−1, x

¢ 6= Z. By changing mi−1 to m∗i−1 =
¡
Ri−1i−1, R

i−1
i , y, ¦¢ ∈ Mi−1,

agent i − 1 can obtain y = g
¡
m∗i−1,m−(i−1)

¢
via Rule 3. In the case that

C∗i−1
¡
R̄i−1, x

¢
= Z, by changingmi−1 tom∗i−1 =

¡
Ri−1i−1, R

i−1
i , y, ki−1

¢ ∈Mi−1,
agent i−1 can attain y = g ¡m∗i−1,m−(i−1)¢ with appropriately choosing ki−1.
It follows that C∗i−1

¡
R̄i−1, x

¢ ⊆ g ¡Mi−1,m−(i−1)
¢
, so that C∗i−1

¡
R̄i−1, x

¢ ⊆
L (Ri−1, x) as m ∈ NE (γ, R). Consider agent i. Again, take any y ∈
C∗i
¡
R̄i, x

¢
= C∗i

¡
Ri−1i , x

¢
. Suppose that C∗i

¡
R̄i, x

¢ 6= Z. By changing mi to

m∗ı́ =
¡
Rii, R

i
i+1, y, ¦

¢ ∈ Mi, agent i can obtain y = g (m
∗
i ,m−i) via Rule 3.

In the case that C∗i
¡
R̄i, x

¢
= Z, by changing mi to m

∗
i =

¡
Rii, R

i
i+1, y, k

i
¢ ∈

Mi, agent i can attain y = g (m∗i ,m−i) with appropriately choosing k
i. It

follows that C∗i
¡
R̄i, x

¢ ⊆ g (Mi,m−i), so that C∗i
¡
R̄i, x

¢ ⊆ L (Ri, x) as m ∈
NE (γ, R). Therefore, x ∈ F (R) by Ms(i). This completes the proof.
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Lemma 2. Let F be an SCC defined on Rn. Then, Condition Ms is

equivalent to Condition μ.

Proof. Let F on Rn be an SCC. First, suppose that F satisfies Ms. Then,

by Theorem 2, F is Nash-implementable by an s-mechanism, and so it is
Nash-implementable. By Moore and Repullo (1990)’s result it follows that

F satisfies μ. Conversely, suppose that F satisfies μ. Then, F is Nash-

implementable. For any ` ∈ N , R ∈ Rn and x ∈ F (R), let

F−1 (R`, x) ≡
©
R0−` ∈ Rn

−`|x ∈ F
¡
R`, R

0
−`
¢ª

where Rn
−` ≡ R1× ...×R`−1×R`+1× ...×Rn. For any ` ∈ N , R ∈ Rn and

x ∈ F (R), define the set C∗` (R`, x) as follows

C∗` (R`, x) ≡ ∪R0−`∈F−1(R`,x)C`
¡¡
R`, R

0
−`
¢
, x
¢
. (3)

We prove that F satisfies Ms. Let Z = Y . Moreover, take any R ∈ Rn and

x ∈ F (R). It follows from (3) and μ that, for each ` ∈ N , x ∈ C∗` (R`, x) ⊆
L (R`, x) ∩ Z and C∗` (R`, x) is well-defined. Next, we show that F meets

Ms(i)-Ms(iii). For, take any R∗ ∈ Rn.

Let C∗` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N . Since x ∈ F (R), it follows from
μ and (3) that C` (R, x) ⊆ C∗` (R`, x) for all ` ∈ N . Then, μ(i) implies that
x ∈ F (R∗), as we sought. Thus, Ms(i) holds. Let y ∈ C∗i (Ri, x) ⊆ L (R∗i , y)
for some i ∈ N and Z ⊆ L (R∗` , y) for all ` ∈ N\ {i}. As y ∈ C∗i (Ri, x),
it follows from (3) and μ that y ∈ Ci

¡
Ri, R

0
−i, x

¢ ⊆ C∗i (Ri, x) for some
R0−i ∈ F−1 (Ri, x). Then, μ(ii) implies that y ∈ F (R∗). Thus, Ms(ii) is

satisfied. Let y ∈ Z ⊆ L (R∗` , y) for all ` ∈ N . Then, μ(iii) implies that
y ∈ F (R∗), and so Ms(iii) holds. We conclude that F satisfies Ms if it

satisfies Condition μ.

Form Lemma 1 and Lemma 2 the corollary stated below is readily ob-

tained.

Corollary 3. Let F be an SCC defined on Rn. Then, Condition Ms is

equivalent to Condition μs.
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5 Characterizing s-Mechanisms as the Lower-
Bound Strategy Space Reduction Mecha-

nisms

The last two sections show that the ‘strategy space reduction’ from the canon-

ical mechanisms up to s-mechanisms does not make any effect on the class
of Nash implementable SCCs. The purpose of this section is to show that

such a property can no longer hold if a further step of the ‘strategy space

reduction’ is taken. Indeed, if the self-relevant mechanism defined in Tatami-

tani (2000) is taken as a further step of the strategy space reduction from

s-mechanisms, it can be shown that the class of Nash-implementable SCCs
by self-relevant mechanisms is a proper subset of the class of Nash imple-

mentable SCCs. However, there is another type of further strategy space

reduction that is relevant for the issue at hand. In what follows, we consider

a strategy space reduction mechanism in which each agent reveals only her

neighbor’s preferences in addition to an outcome and an integer (neighbor’s

preference mechanism, np-mechanism) and examine the cost of using this
kind of mechanisms on implementability of SCCs.

Definition 3. A mechanism γ = (M, g) is neighbor’s preference mechanism
(np-mechanism) if, for any ` ∈ N , M` ≡ R`+1 × Y ×N , where Y ⊆ X and

`+ 1 = 1 if ` = n.

Definition 4. An SCC F is Nash-implementable by an np-mechanism if there
exists an np-mechanism γ = (M,g) such that, for all R ∈ Rn:

i) F (R) = NA (γ, R); and
ii) for all x ∈ F (R), if m` = (R`+1, x, ¦) ∈ M` for all ` ∈ N , with `+ 1 = 1
if ` = n, then m ∈ NE (γ, R) and g (m) = x.
Using the approach developed by Moore and Repullo (1990), we now in-

troduce a condition, Condition μnp, which turns out to be necessary for SCCs
that are implementable by np-mechanisms in the three or more agents case.
Before describing the condition and prove its necessity, we need addition nota-

tion. Given (R, x) ∈ Rn×X, defineD (R, x) ≡ ©` ∈ N |F−1 ¡R−(`+1), x¢ 6= ∅ª.
The condition is stated as follows.

Condition μnp (for short, μnp): An SCC F satisfies Condition μnp if there
exists a set Y ⊆ X, and for all R ∈ Rn and all x ∈ F (R), there is a profile
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of sets
¡
C`
¡
R−{`+1}, x

¢¢
`∈N such that x ∈ C`

¡
R−{`+1}, x

¢ ⊆ L (R`, x)∩Y for
all ` ∈ N , with `+ 1 = 1 if ` = n, and for all R∗ ∈ Rn:

(i) if C`
¡
R−{`+1}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci

¡
R−{i+1}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗),
(iv) for all ` ∈ N with R∗−{`+1} = R−{`+1} and x ∈ F (R∗), C`

³
R∗−{`+1}, x

´
=

C`
¡
R−{`+1}, x

¢
;

(v) if x /∈ F (R∗) andD (R∗, x) 6= ∅, then there exists an outcome p (R∗, x) ∈
X such that:

(a) p (R∗, x) ∈ C`
³
R∗−{`+1}, x

´
for any ` ∈ D (R∗, x); and

(b) for all R∗∗ ∈ Rn, if Ci
³
R∗−{i+1}, x

´
⊆ L (R∗∗i , p (R

∗, x)) for all i ∈
D (R∗, x), and Y ⊆ L (R∗∗` , p (R∗, x)) for all ` ∈ N\D (R∗, x), then p (R∗, x) ∈
F (R∗∗).

Proposition 3. An SCC F on Rn satisfies Condition μnp if it is Nash-
implementable by an np-mechanism.

Proof. Let an SCC F on Rn be Nash-implementable by an np-mechanism.
Let γ = (M,g) be such an np-mechanism. Define Y ≡ g (M). For all

R ∈ Rn and x ∈ F (R), there exists an m ∈ NE (γ, R) such that g (m) = x
and m` =

¡
R`+1, x, k

`
¢
for all ` ∈ N , by Definition 4(ii). Take any ` ∈ N .

For any R0`+1 ∈ F−1
¡
R−{`+1}, x

¢
, there exists m0

` =
¡
R0`+1, x, k

`
¢
such that

g (m0
`,m−`) = x ∈ NA

¡
γ,
¡
R0`+1, R−{`+1}

¢¢
, by Definition 4(ii). Thus, for any

R0`+1 ∈ F−1
¡
R−{`+1}, x

¢
, g (M`,m−`) ⊆ L (R`, x). Moreover, g (m0

`,m−`) =
x ∈ NA (γ, R) also holds for any R0`+1 ∈ F−1

¡
R−{`+1}, x

¢
and any m0

` =¡
R0`+1, x, k

`
¢
.

Define C`
¡
R−{`+1}, x

¢ ≡ g (M`,m−`). Then, x ∈ C`
¡
R−{`+1}, x

¢ ⊆
L (R`, x) ∩ Y . Moreover, for any R∗ ∈ Rn with R∗−{`+1} = R−{`+1} and
x ∈ F (R∗), it follows from g (M`,m−`) ⊆ L (R`, x) that C`

¡
R−{`+1}, x

¢
=

g (M`,m−`) = C`
³
R∗−{`+1}, x

´
, thus F satisfies μnp(iv).

Next, we show that F satisfies Conditions μnp(i)-μnp(iii). Take any R∗ ∈
Rn.

Suppose that C`
¡
R−{`+1}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N . Then, it follows
from C`

¡
R−{`+1}, x

¢ ≡ g (M`,m−`) that g (M`,m−`) ⊆ L (R∗` , x) for all ` ∈
N . We conclude that g (m) = x ∈ NA (γ, R∗) = F (R∗). Hence, μnp(i) holds.
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For each i ∈ N , let y ∈ Ci
¡
R−{i+1}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y)
for all ` ∈ N\ {i}. It follows from Ci

¡
R−{i+1}, x

¢ ≡ g (Mi,m−i) that y ∈
g (Mi,m−i). Moreover, g (M) ⊆ L (R∗` , y) for all ` ∈ N\ {i}. It follows that
y ∈ NA (γ, R∗) = F (R∗). Hence, μnp(ii) holds.
If y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ g (M) ⊆ L (R∗` , y) for all

` ∈ N . Thus, there is an m∗ ∈ M such that g (m∗) = y, which implies that
y ∈ NA (γ, R∗) = F (R∗). Hence, μnp(iii) holds.
Suppose that x /∈ F (R∗) and D (R∗, x) 6= ∅ and consider the strategy

profile m∗` =
¡
R∗`+1, x, k

`
¢ ∈ M` for all ` ∈ N . Let p (R∗, x) ≡ g (m∗). Con-

sider any i ∈ D (R∗, x) and R0i+1 ∈ F−1
³
R∗−(i+1), x

´
. Let

³
R∗−(i+1), R

0
i+1

´
=

R0. Then, from the previous discussion, it follows that there exists a pro-

file
³
C`
³
R0−(`+1), x

´´
`∈N
, with C`

³
R0−(`+1), x

´
≡ g ¡M`,m

0
−`
¢
for all ` ∈ N ,

where m0
` = m∗` for all ` ∈ N\ {i} and m0

i =
¡
R0i+1, x, k

i
¢
. As it holds for

any i ∈ D (R∗, x) it follows that g (m∗) ∈ Y and g (m∗) ∈ Ci
³
R∗−(i+1), x

´
≡

g
¡
Mi,m

∗
−i
¢
. Finally, let Ci

³
R∗−{i+1}, x

´
⊆ L (R∗∗i , p (R

∗, x)) for all i ∈
D (R∗, x) and Y ⊆ L (R∗∗` , p (R

∗, x)) for all ` ∈ N\D (R∗, x). Then, since
g
¡
Mi,m

∗
−i
¢ ⊆ L (R∗∗i , g (m∗)) for all i ∈ D (R∗, x) and g (M) ⊆ L (R∗∗` , g (m∗))

for all ` ∈ N\D (R∗, x) it follows that p (R∗, x) = g (m∗) ∈ NA (γ, R∗∗) =
F (R∗∗). Thus, μnp(v) holds. We conclude that F satisfies μnp.

The above proposition implies that Nash implementation by an np-mechanism
is no equivalent to Nash implementation, since the existence of the punish-

ment condition, Condition μnp(v), makes Condition μnp stronger than Con-
dition μ. That is, Condition μnp implies Condition μ, but the converse
does not hold. Therefore, Proposition 3 implies that the class of Nash-

implementable SCCs by np-mechanisms is a proper subset of the class of
Nash-implementable SCCs.10 Moreover, combined with the characterization

result of Nash implementation by self-relevant mechanisms in Tatamitani

(2000), Proposition 3 indicates that no more ‘strategy-space-reduction mech-

anisms’ than s-mechanisms can preserve the Moore and Repullo (1990) full
characterization of Nash implementation. In other words, the class of s-
mechanisms represents the lower-bound of ‘mechanisms with strategy space

10To see it, for instance, consider classical economic environments as the domain of

SCCs. Then, as shown in Saijo, Tatamitani, and Yamato (1999), the no-envy and efficient

correspondence does not satisfy μnp-(v), though it satisfies μ.
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reduction’ which can work for Nash implementation of the class of SCCs

satisfying Condition μ.

6 Concluding Remarks

In this paper, we deal with the informational efficiency issue pertaining to

Maskin’s Theorem (Maskin, 1999). We focus on s-mechanisms in which each
agent reports to the planner her own preference and her neighbor’s preference

solely, in addition to a feasible social outcome and an integer. We introduce

a class of new conditions, labelled {Condition μsr}r=1,...,n−2, each of which
fully characterizes the class of SCCs Nash-implemantable by s-mechanisms.
Surprisingly, for each r = 1, . . . , n−2, Condition μsr is equivalent to Condition
μ. This has two important implications for Nash implementation. First, the
class of Nash-implementable SCCs is equivalent to the class of SCCs Nash-

implementable by s-mechanisms. Second, even though our condition is stated
in terms of the existence of certain sets, it can easily be checked in practice

by the algorithm provided by Sjöström (1991).

Note that our results are in line with other well known results of Nash

implementation in economic environments. In particular, the equivalent rela-

tionship between Nash implementation by s-mechanism and Nash implemen-
tation in general social choice environments is analogous to the equivalent

relationship between Nash implementation by natural allocation mechanisms

and Nash implementation by natural quantity2 mechanisms (Saijo et al,

1996). Moreover, Tatamitani (2001) provides a full characterization of Nash

implementation by self-relevant mechanisms, which together with Proposi-

tion 3 in this paper indicates that any further ‘strategy space reduction’ from

s-mechanisms drastically decreases the class of Nash-implementable SCCs.
This is parallel to the case of natural implementation in economic environ-

ments, in which the class of SCCs Nash-implementable by natural quantity

mechanisms is much smaller than the Nash-implementable ones by natural

quantity2 mechanisms.

In contrast, whenever a small departure from the standard framework of

implementation theory is considered the above relationship may break down.

For example, Matsushima (2008) and Dutta and Sen (2009) introduce the

notion of partial honesty in implementation theory and consider Nash imple-

mentation problems with partially-honest agents. A partially-honest agent is

an agent who has preferences over message profiles and displays concerns for
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two dimensions in lexicographic order: (1) her outcome and (2) her truth-

telling behavior. In the presence of partially honest agents, the equivalent

relationship between Nash implementation and Nash implementation by s-
mechanisms no longer holds, as Lombardi and Yoshihara (2011) show. This

suggests that the equivalent relationship indispensably relies on the assump-

tion that agents act purely to advance their own self-interest and are not

inclined to attach (moral) rights and duties to their actions.

References

[1] Danilov, V. (1992): Implementation via Nash equilibria, Econometrica,

60, 43-56.

[2] Dutta, B., and Sen, A. (1991): A necessary and sufficient condition

for two-person Nash implementation, Review of Economic Studies, 58,

121-128.

[3] Dutta, B., and A. Sen (2009): Nash implementation with partially-

honest individuals. Warwick Economic Research Papers, n. 920, War-

wick University.

[4] Dutta, B., A. Sen and R. Vohra (1995): Nash implementation through

elementary mechanisms in economic environments. Economic Design,

1, 173-204.

[5] Hurwicz, L. (1960): Optimality and informational efficiency in re-

source allocation processes. In: Arrow, K.J., Karlin, S., Suppes, P.

(eds), Mathematical Methods in the Social Sciences. Stanford Univer-

sity Press, 27-46.

[6] Lombardi, M. and N. Yoshihara (2011): On Nash implementation with

partially honest agents: Almost necessary and sufficient characteriza-

tions. Mimeo in progress, Hitotsubashi University.

[7] Maskin, E. (1999): Nash equilibrium and welfare optimality, Review of

Economic Studies, 66, 23-38.

[8] Matsushima, H. (2008): Role of honesty in full implementation, Journal

of Economic Theory, 139, 353-359.

20



[9] Moore, J., and Repullo, R. (1990): Nash implementation: A full char-

acterization, Econometrica, 58, 1083-1100.

[10] Saijo, T. (1988): Strategy space reduction in Maskin’s theorem: suffi-

cient conditions for Nash implementation, Econometrica, 56, 693-700.

[11] Saijo, T., Tatamitani, Y., and Yamato, T. (1996): Toward natural

implementation, International Economic Review, 37, 949-980.

[12] Saijo, T., Tatamitani, Y., and Yamato, T. (1999): Characterizing nat-

ural implementability: the fair and Walrasian correspondences, Games

and Economic Behavior 28, pp. 271-293.

[13] Sjöström, T. (1991): On the necessary and sufficient conditions for

Nash implementation, Social Choice and Welfare, 8, 333-340.

[12] Tatamitani, Y. (2001): Implementation by self-relevant mechanisms,

Journal of Mathematical Economics, 35, 427-444.

[13] Yamato, T. (1992): On Nash implementation of social choice corre-

spondences, Games and Economic Behavior, 4, 484-492.

21




