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tion (Saijo, 1988), this paper fully characterizes the class of Nash-
implementable social choice correspondences (SCCs) by mechanisms
with the strategy space reduction, which is further shown to be equiv-
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JEL classification: C72; D71; D82.
Keywords: Nash implementation, strategy space reduction, s-mechanisms,
Condition μs

∗This paper was started when Lombardi was a COE Visiting Young Researcher at
Hitotsubashi University. Their generous hospitality and financial support is gratefully
acknowledged.

†Department of Quantitative Economics, Maastricht School of Business and Economics,
Maastricht University, P.O. Box 616, NL-6200 MD Maastricht, Netherlands, phone: (+31)
43 388 3761, fax: (+31) 43 388 4874, e-mail: m.lombardi@maastrichtuniversity.nl.

‡(Corresponding Author) Institute of Economic Research, Hitotsubashi University, 2-4
Naka, Kunitachi, Tokyo, 186-8603 Japan, phone: (+81) 42 580 8354, fax: (+81) 42 580
8333, e-mail: yosihara@ier.hit-u.ac.jp.

1



1 Introduction

In Nash implementation theory, it isMaskin’s Theorem (Maskin, 1999) which
shows that when the planner faces at least three agents, a social choice corre-
spondence (SCC) is implementable in (pure-strategy) Nash equilibria (hence-
forth, Nash-implementable) if it satisfies Maskin monotonicity and no-veto
power ; conversely, any Nash-implementable SCC is Maskin-monotonic. Two
issues pertaining to this theorem stand out. First, it does not provide a
complete characterization of Nash-implementable SCCs, since no-veto power
is not necessary for Nash implementation. Second, a canonical mechanism
proposed in this theorem, which requires each agent to report a preference
profile, a feasible social outcome, and an integer, is not so attractive. This
is because the message space of this mechanism is rather large and announc-
ing all other agents’ preferences is undesirable in terms of the informational
efficiency of decentralized decision making (on this point see, for instance,
Hurwicz, 1960).
Moore and Repullo (1990) address the first issue by providing, without

any domain restriction, a necessary and sufficient condition, called Condi-
tion μ, for Nash implementability of SCCs in societies with more than two
agents.1 In contrast to the first issue, the issue of informational efficiency
is addressed by Saijo (1988), which shows that proposing a mechanism with
strategy-space reduction (henceforth, s-mechanism) would suffice to guaran-
tee Maskin’s Theorem. Note that, in s-mechanisms, each agent is requested
to announce, in addition to a feasible social outcome and an integer, her own
and her neighbor’s preferences solely. Yet, as Moore and Repullo (1990) also
use a canonical mechanism for showing the full characterization and Saijo
(1988) does not discuss a full characterization of Nash implementation, it
leaves unclear not only whether Moore and Repullo’s result indispensably
relies on canonical mechanisms but also whether s-mechanisms can Nash-
implement any other SCC than Maskin-monotonic and no-veto power ones.
In this paper, we address the issue of what constitutes the necessary and

sufficient condition for Nash implementation by s-mechanisms. We introduce
a new condition (labelled, Condition μs) which fully characterizes the class

1Note that, for two person societies, Moore and Repullo (1990) and Dutta and Sen
(1991) independently provided necessary and sufficient conditions for Nash implemen-
tation, whereas even in societies with more than two agents, there are other works on
complete characterizations of Nash implementation under some domain restrictions, such
as Danilov (1992) and Yamato (1992).
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of SCCs Nash-implemantable by s-mechanisms. Surprisingly, Condition μs

is equivalent to Condition μ. This implies that the full characterization by
Moore and Repullo (1990) works even if canonical mechanisms are excluded
and the available class of mechanisms is restricted to that of s-mechanisms.
The paper is organized as follows. In section 2, we introduce notation

and definitions. In Section 3, we state and prove our results.

2 Preliminaries

The set of (social choice) environments is (N,X,Rn), where N ≡ {1, ..., n}
is a set of n ≥ 3 agents, X ≡ {x, y, z, ...} is the set of attainable alterna-
tives (or outcomes), and Rn is the set of admissible preference profiles (or
states of the world). Henceforth, we assume that the cardinality of X is
#X ≥ 2. Let R (X) be the set of all complete preorders on X. We as-
sume that Rn ≡ R1× ...×Rn is a non-empty subset of the n-fold Cartesian
product Rn (X) ≡R (X)× ....×R (X)| {z }

n-times

. An element of Rn is denoted by

R ≡ (R1, ..., Rn), where its `-th component is R` ∈ R`, for each ` ∈ N . For
any preference profile R ∈ Rn and any ` ∈ N , let R−` be the list of elements
of R for all agents except `, i.e., R−` ≡ (R1, ..., R`−1, R`+1, ..., Rn). Given a
list R−` and R` ∈ R`, we denote by (R−`, R`) the preference profile consist-
ing of these R` and R−`. For any (R`, x) ∈ R` ×X, agent `’s weakly lower
contour set of R` at x is given by L (R`, x) ≡ {y ∈ X| (x, y) ∈ R`}. For each
` ∈ N and each R` ∈ R`, maxR` X ≡ {x ∈ X| (x, y) ∈ R` for all y ∈ X}.
We also assume that N and X are fixed throughout the following discus-

sion, so that the set of environments is boiled down to Rn. A social choice
correspondence (SCC) is a correspondence F : Rn ³ X with F (R) 6= ∅ for
all R ∈ Rn. An SCC F is (Maskin-)monotonic if, for all R,R0 ∈ Rn with
x ∈ F (R), we have that x ∈ F (R0) whenever L (R`, x) ⊆ L (R0`, x) for all
` ∈ N .2 An SCC F satisfies no-veto power if, for all R ∈ Rn, we have that
x ∈ F (R) whenever x ∈ maxR` X for at least n− 1 agents.
A mechanism (or game-form) is a pair γ ≡ (M, g), where M ≡ M1 ×

... × Mn, and g : M → X is the outcome function. Denote a generic
message (or strategy) for agent ` by m` ∈ M` and a generic message pro-
file by m = (m1, ...,mn) ∈ M . For any m ∈ M and ` ∈ N , let m−` ≡
(m1, ...,m`−1,m`+1, ...,mn). Let M−` ≡ ×j∈N\{`}Mj. Given m−` ∈ M−` and

2Weak set inclusion is denoted by ⊆.
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m` ∈M`, denote by (m`,m−`) the message profile consisting of these m` and
m−`. Given R ∈ Rn and γ = (M,g), (γ, R) constitutes a (non-cooperative)
game. Given a game (γ, R), m ∈M is a (pure strategy) Nash equilibrium of
(γ, R) if and only if, for all ` ∈ N , (g (m) , g (m0

`,m−`)) ∈ R` for all m0
` ∈M`.

Let NE (γ, R) denote the set of Nash equilibria of (γ, R), whereas denote the
set of Nash equilibrium outcomes of (γ, R) by NA (γ, R) ≡ g (NE (γ, R)).
A mechanism γ = (M, g) implements F in Nash equilibria, or simply

Nash-implements F , if and only if NA (γ, R) = F (R) for all R ∈ Rn. An
SCC F is Nash-implementable if there is such a mechanism.
Moore and Repullo (1990) show that, under the society with more than

two agents, the following condition is the necessary and sufficient condition
for any SCC to be Nash-implemetable.

Condition μ (for short, μ): An SCC F satisfies μ if there exists a set
Y ⊆ X, and for all R ∈ Rn and for all x ∈ F (R), there is a profile of sets
(C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N , and for
any R∗ ∈ Rn:
(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for each i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).

3 Results

Following Saijo (1988), we focus on mechanisms in which each agent reports
her own preference R` ∈ R`, her neighbor’s preference R`+1 ∈ R`+1, an
outcome x ∈ Y ⊆ X, and an integer k ∈ N .
Definition 1: A mechanism (M,g) is s-mechanism if, for any ` ∈ N ,
M` ≡ R` ×R`+1 × Y ×N , where Y ⊆ X and `+ 1 = 1 if ` = n.

Definition 2: An SCC F is Nash-implementable by an s-mechanism if
there exists an s-mechanism (M,g) such that:
i) for all R ∈ Rn, F (R) = NA (γ, R); and
ii) for all R ∈ Rn and all x ∈ F (R), if m` =

¡
R`, R`+1, x, k

`
¢ ∈ M` for all

` ∈ N , with `+ 1 = 1 if ` = n, then m ∈ NE (γ, R) and g (m) = x.
We now introduce a condition, labelled Condition μs, to characterize

Nash implementability by s-mechanisms. The condition can be stated as
follows.
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Condition μs (for short, μs): An SCC F satisfies condition μs if there exists
a set Y ⊆ X, and for all R ∈ Rn and for all x ∈ F (R), there is a profile of
sets

¡
C`
¡
R−{`,`+1}, x

¢¢
`∈N such that x ∈ C`

¡
R−{`,`+1}, x

¢ ⊆ L (R`, x)∩Y for
all ` ∈ N , with `+ 1 = n if ` = n, and for all R∗ ∈ Rn:
(i) if C`

¡
R−{`,`+1}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci

¡
R−{i,i+1}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).
Proposition 1. An SCC F satisfies μs if it is Nash-implementable by an
s-mechanism.

Proof. Let an SCC F be Nash-implementable by an s-mechanism. Then,
since it is Nash-implementable, it satisfies μ. Thus, there exists a set Y ⊆
X, and for all R ∈ Rn and for all x ∈ F (R), there is a profile of sets
(C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x)∩Y for all ` ∈ N . Moreover,
for any R∗ ∈ Rn, μ(i)-(iii) are satisfied. Now, for each R ∈ Rn and each x ∈
F (R), let

¡
C`
¡
R−{`,`+1}, x

¢¢
`∈N be defined as C`

¡
R−{`,`+1}, x

¢ ≡ C` (R, x)
for each ` ∈ N . Then, F satisfies μs.
Proposition 2. An SCC F satisfying μs is Nash-implementable by an s-
mechanism.

Proof. Let γ ≡ (M,g) be an s-mechanism. Suppose that F satisfies μs.
Fix any m ∈ M , R ∈ Rn, and x ∈ X, and let m` =

¡
R``, R

`
`+1, x

`, k`
¢ ∈

M`, where ` + 1 = 1 if ` = n, and where the announcement of agent ` ∈ N
about agent ` + 1’s preferences is R``+1. We say that the message profile
m ∈M is:

(i) consistent with R and x if, for all ` ∈ N , R`` = R`−1` = R` and x` = x,
where `− 1 = n if ` = 1;
(ii) m−i quasi-consistent with x and R, where i ∈ N , if for all ` ∈ N , x` = x,
and for all ` ∈ N\{i, i + 1}, R`` = R`−1` = R`, Ri−1i = Ri, Ri+1i+1 = Ri+1, and
[Rii 6= Ri or Rii 6= Ri+1], where j − 1 = n if j = 1 for j ∈ {i, `};
(iii)m−i consistent with x and R, where i ∈ N , if for all ` ∈ N\{i}, x` = x 6=
xi, and for all ` ∈ N\{i, i+1}, R`` = R`−1` = R`, Ri−1i = Ri and Ri+1i+1 = Ri+1,
where j − 1 = n if j = 1 for j ∈ {i, `}.
Define the outcome function g :M → X as follows: For any m ∈M ,

Rule 1: m is consistent with x and R̄ ∈ Rn, where x ∈ F
¡
R̄
¢
, then

g (m) = x.
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Rule 2: For some i ∈ N , m−i is quasi-consistent with x and R̄ ∈ Rn, where
x ∈ F ¡R̄¢, then g (m) = x.
Rule 3: For some i ∈ N , m is m−i consistent with x and R̄ ∈ Rn, where
x ∈ F ¡R̄¢, and Ci ¡R̄−{i,i+1}, x¢ 6= Y , then

g (m) =

½
xi if xi ∈ Ci

¡
R̄−{i,i+1}, x

¢
x otherwise

.

Rule 4: Otherwise, g (m) = x`∗(m) where `∗ (m) ≡ P
i∈N

ki (mod n).3

Since F satisfies μs, it follows that, for any R ∈ Rn and any x ∈ F (R),
x ∈ Y . We show that γ = (M, g) Nash-implements F . For, let R ∈ Rn.
To show that F (R) ⊆ NA (γ, R), let x ∈ F (R) and suppose that, for all

` ∈ N , m` = (R`, R`+1, x, ¦), where ¦ ∈ N is an arbitrary agent index. Since
m is consistent with x and R and x ∈ F (R), it follows from Rule 1 that
g (m) = x. Suppose that ` ∈ N deviates from m` to m∗` =

¡
R``, R

`
`+1, x

`, ¦¢ ∈
M` such that (R`, R`+1, x) 6=

¡
R``, R

`
`+1, x

`
¢
. It follows from Rules 2-3 that

g (M`,m−`) = C`
¡
R−{`,`+1}, x

¢
if C`

¡
R−{`,`+1}, x

¢ 6= Y . It is obvious that
g (M`,m−`) ⊆ C`

¡
R−{`,`+1}, x

¢
if C`

¡
R−{`,`+1}, x

¢
= Y . Since F satisfies μs,

it follows that g (M`,m−`) ⊆ L (R`, x). As it holds for any ` ∈ N , we have
m ∈ NE (γ, R) and so x ∈ NA (γ, R). Furthermore, this guarantees the
condition (ii) of Definition 2.
Conversely, to show that NA (γ, R) ⊆ F (R), let m ∈ NE (γ, R). Con-

sider the following cases.

Case 1: m falls into Rule 1.
Then, m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Thus,

g (m) = x. Take any ` ∈ N . Suppose that C`
¡
R̄−{`,`+1}, x

¢ 6= Y . For any
y ∈ C`

¡
R̄−{`,`+1}, x

¢
, changingm` for m∗` =

¡
R``, R

`
`+1, y, ¦

¢ ∈M` agent ` can
obtain y = g (m∗i ,m−i), by Rule 3. In case Ci

¡
R−{i,i+1}, x

¢
= Y , agent `

can attain any y ∈ Y by Rule 4. Thus, C`
¡
R̄−{`,`+1}, x

¢
= g (M`,m−`) for

all ` ∈ N . As m ∈ NE (γ, R), C`
¡
R̄−{`,`+1}, x

¢ ⊆ L (R`, x) for all ` ∈ N .
Therefore, x ∈ F (R) by μs(i).
Case 2: m falls into Rule 2.
Then m is m−i quasi-consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢.

Thus, g (m) = x. We proceed according the following sub-cases: 1) Rii 6= R̄i
and Rii 6= R̄i+1, and 2) Rii 6= R̄i and Rii = R̄i+1.4

3If the remainder is zero the winner of the game is agent n.
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Sub-case 2.1. Rii 6= R̄i and Rii 6= R̄i+1
Any ` ∈ N\ {i} can attain any y ∈ Y \ {x} by inducing Rule 4, so that

x ∈ maxR` Y as m ∈ NE (γ, R). Take any y ∈ Ci
¡
R̄−{i,i+1}, x

¢
. Suppose

that Ci
¡
R̄−{i,i+1}, x

¢ 6= Y . By changing mi for m∗ı́ =
¡
Rii, R

i
i+1, y, ¦

¢ ∈
Mi agent i can obtain y = g (m∗i ,m−i), by Rule 3. In the case that
Ci
¡
R̄−{i,i+1}, x

¢
= Y , by changing mi for m∗ı́ =

¡
Rii, R

i
i+1, y, k

i
¢ ∈ Mi

agent i can attain y = g (m∗i ,m−i) by appropriately choosing k
i. It fol-

lows that Ci
¡
R̄−{i,i+1}, x

¢ ⊆ g (Mi,m−i). Moreover, as m ∈ NE (γ, R),
Ci
¡
R̄−{i,i+1}, x

¢ ⊆ L (Ri, x). Therefore, x ∈ F (R) by either μs(ii) or μs(iii).
Sub-case 2.2. Rii 6= R̄i and Rii+1 = R̄i+1
Let Rii = R

0
i. We distinguish whether x ∈ F

¡
R̄0
¢
where R̄0 ≡ ¡R̄−i, R0i¢

or not. Suppose that x /∈ F ¡R̄0¢. Then the same reasoning used above for
sub-case 2.1 carries over into this sub-case, so that x ∈ F (R). Otherwise,
let x ∈ F ¡R̄0¢. Then, i − 1 or i is the deviator. Agent ` ∈ N\ {i− 1, i}
can attain any y ∈ Y \ {x} by inducing Rule 4, so that x ∈ maxR` Y
as m ∈ NE (γ, R). Since x ∈ F ¡R̄¢, there exists C` ¡R̄−{`,`+1}, x¢ ⊆ Y
for each ` ∈ N\ {i− 1, i}, and so C`

¡
R̄−{`,`+1}, x

¢ ⊆ L (R`, x) by Y ⊆
L (R`, x) for each ` ∈ N\ {i− 1, i}. Observe that R̄−{i,i+1} = R̄0−{i,i+1}
and R̄−{i−1,i} = R̄0−{i−1,i}, so that Ci

¡
R̄−{i,i+1}, x

¢
= Ci

³
R̄0−{i,i+1}, x

´
and

Ci−1
¡
R̄−{i−1,i}, x

¢
= Ci−1

³
R̄0−{i−1,i}, x

´
. Consider agent i − 1 and take

any y ∈ Ci−1
¡
R̄−{i−1,i}, x

¢
. Let Ci−1

¡
R̄−{i−1,i}, x

¢ 6= Y . By changing
mi−1 into m∗ı́−1 =

¡
Ri−1i−1, R

i−1
i , y, ¦¢ ∈ Mi−1 agent i − 1 can obtain y =

g
¡
m∗i−1,m−(i−1)

¢
, by Rule 3. In the case that Ci−1

¡
R̄−{i−1,i}, x

¢
= Y ,

by changing mi−1 for m∗i−1 =
¡
Ri−1i−1, R

i−1
i , y, ki

¢ ∈ Mi, agent i − 1 can
attain y = g

¡
m∗i−1,m−(i−1)

¢
with appropriate choice of ki−1. Therefore,

Ci−1
³
R̄0−{i−1,i}, x

´
⊆ g ¡Mi−1,m−(i−1)

¢
. By the same reasoning, we have that

Ci
¡
R̄−{i,i+1}, x

¢ ⊆ g (Mi,m−i). Moreover, it follows from m ∈ NE (γ, R)
thatCi−1

¡
R̄−{i−1,i}, x

¢ ⊆ L (Ri−1, x) andCi ¡R̄−{i,i+1}, x¢ ⊆ L (Ri, x). There-
fore, x ∈ F (R) by μs(i).
Case 3: m falls into Rule 3.
Then m is m−i consistent with x and R̄ ∈ Rn, where x ∈ F

¡
R̄
¢
.

Therefore, Ci
¡
R̄−{i,i+1}, x

¢ 6= Y . First, we show that Ci
¡
R̄−{i,i+1}, x

¢ ⊆
g (Mi,m−i). For any xi ∈ Ci

¡
R̄−{i,i+1}, x

¢ \ {x}, considerm∗i = ¡Rii, Rii+1, xi, ¦¢.
4The sub-case Rii = R̄i and R

i
i+1 6= R̄i+1 is not explicitly considered as it can be proved

similarly to the sub-case 2.2 shown below.
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Then, Rule 3 implies that g (m−i,m∗i ) = xi. On the other hand, to attain x
agent i can induce Rule 1 by changing mi to m∗i =

¡
R̄i, R̄i+1, x, ¦

¢
so that

g (m−i,m∗i ) = x. Hence, Ci
¡
R̄−{i,i+1}, x

¢ ⊆ g (Mi,m−i).
Next, we claim that g (M`,m−`) = Y for any ` ∈ N\ {i}. We proceed

according to whether #Y = 2 and n = 3 or not.

Sub-case 3.1. not[#Y = 2 and n = 3]
Suppose that #Y > 2. Take any ` ∈ N\ {i}. Then, agent ` can induce

the modulo game by choosing any y ∈ Y \ {x, xi} and changing m` into
m∗` =

¡
R``, R

`
`+1, y, k

`
¢
. To attain y agent ` has only to adjust k` by which

`∗ (m−`,m∗`) = `. To attain x (resp., x
i) agent ` has only to adjust k` by which

`∗ (m−`,m∗`) = j for j ∈ N\ {`, i} (resp., `∗ (m−`,m∗`) = i). Therefore, Y ⊆
g (M`,m−`) for any ` ∈ N\ {i}. Otherwise, let #Y = 2. Then, n > 3. Take
any ` ∈ N\ {i}. Choosing x` = xi, agent ` can make #©` ∈ N |x` = xª ≥ 2
and #

©
` ∈ N |x` 6= xª ≥ 2. As the outcome is determined by Rule 4 agent

` can attain any outcome in Y by appropriately choosing k`. Therefore,
Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}.
Sub-case 3.2. #Y = 2 and n = 3
Then, let N = {i− 1, i, i+ 1} with i + 1 = 1 if i = n and i − 1 = n

if i = 1. As Ci
¡
R̄−{i,i+1}, x

¢ 6= Y , it follows that g (m) = x. We proceed
according to whether for some agents `, `0 ∈ N , with ` 6= `0, #R` 6= 1 and
#R`0 6= 1 or not.
Sub-sub-case 3.2.1. For `, `0 ∈ N , with ` 6= `0, #R` 6= 1 and #R`0 6= 1
In this case, agent i− 1 (resp., i+1) can always induce the modulo game

by appropriately changing the announcement of her own preference or that of
her successor and by carefully choosing the outcome announcement. Finally,
to attain xi, agent i− 1 (resp., i+ 1) has only to adjust the integer index so
that agent i becomes the winner of the modulo game.

Sub-sub-case 3.2.2. For some `, `0 ∈ N , with ` 6= `0, #R` = 1 or #R`0 = 1
Suppose that, for all ` ∗ ∈ {i− 1, i, i+ 1}, #R`∗ = 1. As m falls

into Rule 3, it follows that x ∈ F (R) = F
¡
R̄
¢
. Otherwise, let us con-

sider the case that, for some `∗ ∈ {i− 1, i, i+ 1}, #R`∗ 6= 1. If either
#Ri−1 > 1 or #Ri > 1, then agent i − 1 can induce the modulo game by
changing mi−1 into either m∗i−1 =

¡
Ri−1i−1, R̄i, x, k

i−1¢ with Ri−1i−1 6= R̄i−1 (if
#Ri−1 > 1), or m∗i−1 =

¡
R̄i−1, Ri−1i , xi, ki−1

¢
with Ri−1i 6= Rii (if #Ri > 1).

To attain xi, agent i − 1 has only to choose an appropriate ki−1 so that
i = `∗

¡
m−(i−1),m∗i−1

¢
. Therefore, Y ⊆ g ¡Mi−1,m−(i−1)

¢
. Then, let#Ri−1 =

#Ri = 1. Agent i−1 can change mi−1 into m∗i−1 =
¡
R̄i−1, R̄i, xi, ki−1

¢
. Sup-
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pose that xi /∈ F ¡R̄i−1, R̄i, Rii+1¢. Then, Rule 4 applies, and agent i − 1
can attain xi by adjusting ki−1 so that i − 1 = `∗

¡
m−(i−1),m∗i−1

¢
. Sup-

pose that xi ∈ F ¡R̄i−1, R̄i, Rii+1¢. If Ci+1 ¡R̄i, xi¢ = {xi}, Rule 3 implies
g
¡
m−(i−1),m∗i−1

¢
= xi. In the case that Ci+1

¡
R̄i, x

i
¢
= Y , the outcome is

determined by Rule 4, so that by adjusting ki−1 agent i − 1 can attain xi.
By similar reasoning, it can be shown that agent i + 1 can attain xi ∈ Y .
Therefore, Y ⊆ g (M`,m−`) for ` ∈ {i− 1, i+ 1}.
In all sub-cases, we obtained Y ⊆ g (M`,m−`) for all ` ∈ N\ {i}. As

m ∈ NE (γ, R), we have that Ci
¡
R̄−{i,i+1}, x

¢ ⊆ L (Ri, g (m)) and g (m) ∈
maxR` Y for any ` ∈ N\ {i}, so that g (m) ∈ F (R) by μs(ii).
Case 4: m falls into Rule 4.
Then the outcome is determined by the modulo game so that g (m) =

x`
∗(m), where agent `∗ (m) ∈ N is the winner of the modulo game. Thus,

Y ⊆ g (M`,m−`) for ` ∈ N . Since m ∈ NE (γ, R), it follows that g (m) ∈
maxR` Y for ` ∈ N . Therefore, g (m) ∈ F (R) by μs(iii).
From the above propositions, we obtain the following main theorem.

Theorem. An SCC F is Nash-implementable by an s-mechanism if and
only if it satisfies μs.

Furthermore, we can see that the class of SCCs Nash-implementable by
s-mechanisms is not proper subset of the class of Nash-implementable SCCs.

Lemma. μs is equivalent to μ.

Proof. From Proposition 1 and Moore and Repullo (1990), it is sufficient to
show that μs implies μ. Let an SCC F satisfy μs. Then, by Theorem, this F
is Nash-implementable by an s-mechanism, so that it is Nash-implementable.
Thus, by Moore and Repullo (1990), F satisfies μ.

From Theorem and Lemma, the following corollary holds:

Corollary. An SCC F is Nash-implementable by an s-mechanism if and
only if it is Nash-implementable.

4 Concluding Remarks

In this paper, we deal with the informational efficiency issue pertaining to
Maskin’s Theorem (Maskin, 1999). We focus on s-mechanisms in which each
agent reports to the planner her own preference and her neighbor’s preference
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solely, in addition to a feasible social outcome and an integer. We introduce
a new condition, labelled Condition μs, which fully characterizes the class
of SCCs Nash-implemantable by s-mechanisms. Surprisingly, Condition μs

is equivalent to Condition μ. This has two important implications for Nash
implementation. First, the class of Nash-implementable SCCs is equivalent
to the class of SCCs Nash-implementable by s-mechanisms. Second, even
though our condition is stated in terms of the existence of certain sets, it can
easily be checked in practice by the agorithm provided by Sjöström (1991).
Note that our results are in line with other well known results of Nash

implementation in economic environments. In particular, the equivalent rela-
tionship between Nash implementation by s-mechanism and Nash implemen-
tation by canonical mechanisms in general social choice environments is anal-
ogous to the equivalent relationship between Nash implementation by nat-
ural allocation mechanisms and Nash implementation by natural quantity2

mechanisms (Saijo et al, 1996). Moreover, Tatamitani (2001) provides a full
characterization of Nash implementation by self-relevant mechanisms, which
together with this paper indicates that a further reduction of the strategy
spaces of s-mechanisms drastically decreases the class of Nash-implementable
SCCs. This is parallel to the case of natural implementation in economic
environments, in which the class of SCCs Nash-implementable by natural
quantity mechanisms is much smaller than the Nash-implementable ones by
natural quantity2 mechanisms.
In contrast, whenever we modify the standard framework of implemen-

tation theories to a more practical framework by introducing an element of
perspectives from behavioral economics, the above mentioned relationship
obtained in this paper would not preserve. To be more specific, Matsushima
(2008) and Dutta and Sen (2009) introduce the notion of a partially hon-
est agent as an element of behavioral economic perspectives, and consider
Nash implementation problems with an assumption that there is at least one
partially honest agent who not only has the standard self-interested pref-
erence on consequences but also has an intrinsic preference on truth-telling
behavior. In such a framework, the equivalent relationship between Nash im-
plementaion and Nash implemantaion by s-mechanisms no longer holds, as
Lombardi and Yoshihara (2010) show. This suggests that the equivalent re-
lationship indispensably relies on the standard assumption of self-interested
behaviors.
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