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The Effect of Participation in Government Consortia on the R&D Productivity of Firms: 

A Case Study of Robot Technology in Japan 
 
 
 
 
 

Summary: This paper examines the effect of participation in government-sponsored R&D consortia on the 
R&D productivity of firms in the case of robot technology in Japan.  We attempt to provide a new empirical 
analysis and discussions on the issue of government project evaluation by using indicators of the quality of 
patents, by investigating the impact of the evolution of government programs, and comparing government-
sponsored R&D consortia with collaborative R&D among firms. 
 Using indicators of the quality of patents which enables us to provide an estimation of quality-adjusted 
research productivity, we find that participation in government programs has a positive impact on the research 
productivity of participating firms, but the impact of participation became much higher after the design of 
government programs in this field changed in the late 1990s.  Also, we find that participation in government-
sponsored consortia has a greater impact on research productivity than participation in collaborative R&D among 
firms.  This may support government involvement in R&D as a coordinator of R&D collaboration. 
 
 
 
 
 
JEL Classification: L24, L52, L6, O32, O34, O38 
 
 
 
 
Key words: industrial policy, robot technology, Japanese innovation system, collaborative 
R&D. 
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Introduction 
Economists generally agree that the market will fail to generate a sufficient level of R&D as the 

knowledge stock generated by R&D activity inherently has certain characteristics of public goods and 

thus encourages government involvement in promoting R&D.  However, this does not mean that 

government policy on R&D can always be justified. One important counterargument for government 

involvement is that it may crowd out private R&D instead of complementing it.  There is, in fact, no 

clear consensus among economists as to under which conditions government involvement in R&D 

activities is effective.  

Setting up government-sponsored consortia is one of the policy methods used to promote the 

R&D activities of firms.2 There are actually vast accumulations of theoretical studies that examine the 

benefit of government-sponsored consortia as a way to ameliorate this market failure,3  yet very little 

has been done to systematically examine these theories with a large number of samples.4 Examples of 

these empirical researches is Branstetter and Sakakibara (1998) and Branstetter and Sakakibara (2002).  

There are also a number of studies that analyze government involvement in the pharmaceutical 

industry, examples of which include Okada et al. (2003) and Okada et al. (2006).5  

 This paper empirically analyzes the publicly sponsored consortia in the field of robot 

technology (RT). In the last two decades, RT has undergone dramatic technological development and 

attracted a lot of public attention, yet has been relatively neglected in the economic literature. We 

analyze these public consortia based on the technique introduced by Branstetter and Sakakibara (1998), 

which uses the number of patents applied for by firms as a proxy to measure innovation. Yet we also 

extend the analysis in the following ways. First, instead of using the number of patents to measure 

innovation, we use indicators of the quality of patents, such as the number of claims and citations. This 

allows us to estimate the impact of public consortia on quality-adjusted research productivity. Second, 

we closely look at the evolution of the design and organization of government programs on RT and 

                                                 
2 Other policy methods include special tax treatment on tax, subsidies, and the promotion of R&D activities in universities 
and public institutions (Guellec and van Pottelsbergue de la Potterie, 2003).  
3 Examples include Spence (1984), Katz (1986), and D’Aspremont and Jacquemin (1988). 
4 Indeed, there are a number of empirical studies that analyze innovation policy based on case studies. Examples include 
Irwin and Klenow (1996), Link et al. (2000), and Odagiri et al. (1997). 
5 Okada et al. (2006) examines Japanese biomedical patents between 1991 and 2002 and finds that patent fields by a 
corporation and joint applications by corporations are highly valued and, if a corporation is the first assignee, a patent with a 
government coassignee is highly valued. 
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empirically analyze the effects of the evolution. Third, we take into account the fact that government-

sponsored R&D consortia are just one type of R&D collaboration, and there also exists R&D 

collaboration among the firms without government involvement. Indeed, the theoretical justification of 

government involvement in R&D activities lies in industrial organization theories such as Spence 

(1984) and Katz (1986), which state that market failure can be mitigated by R&D collaboration.  In 

this paper, we define government-sponsored consortia as government-coordinated R&D collaboration, 

and define R&D collaboration which is engaged in by firms without government involvement as 

market-coordinated R&D collaboration. A comparison of the impact between these two types of R&D 

collaboration is then made.  We think the result of this comparison has an important implication 

because, if the market can solve the market failure of R&D activities in the form of collaboration 

among firms, certain grounds justifying government involvement are lost. 

 The subsequent sections are organized as follows. Section 1 briefly overviews the theoretical 

and empirical literature on government-sponsored R&D consortia. It also provides a brief description 

of RT-related publicly funded consortia in Japan. Section 2 presents the dataset used in our analysis 

and underlines the definitions of the kind of patents used in the analysis. In Section 3, we propose 4 

hypotheses that will be tested and specify our empirical models. Section 4 shows the results of our 

quantitative analysis and our interpretation of them.  

 

 

1. Government-sponsored consortia: a review of the literature and the case 

of robot technology 
1.1 Review of the literature on government-sponsored R&D consortia 
The theoretical explanation to justify government-sponsored R&D can be found in the industrial 

organization theory of R&D collaboration.  The pioneering study by Spence (1984) clearly states that  

the existence of knowledge spillovers leads to incomplete appropriability of the R&D results, which 

gives rise to market failure. Accordingly, the equilibrium level of R&D is deemed to be significantly 

lower than the socially optimum level.  The enhancement of intellectual property rights corrects the 

incentive problem of R&D but will create the duplication of R&D activities and hence an excessive 
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level of R&D.  In this context, R&D collaboration can mitigate the tradeoff between the incentives for 

appropriation and the duplication of R&D and provide a solution for the dilemma.  Katz (1986), 

however, indicates that the incentive to form R&D collaboration can be affected by the states of the ex 

post market competition.  If a firm tries to conduct R&D collaboration with a partner that competes in 

the market, part of the rent born out of the research can be lost in the subsequent market competition. 

Thus, if the market competition among the collaborating firms is intense, the incentive to undertake 

R&D collaboration will be quite weak, which results in a less-than-optimal R&D level.   

 The economic literature also identifies several potential conduits whereby government R&D 

projects benefit private R&D. For example, David et al. (2000) lists the following three mechanisms 

through which public R&D stimulates complementary private R&D expenditures: 

1) Publicly supported R&D generates learning effects which enhance the ability of private firms to 

obtain the latest scientific and technological knowledge. (Absorptive capacity) 

2) Using public funds to enable the use of experimental facilities and research facilities and having the 

government assume the fixed costs for establishing specific R&D projects allows private firms to 

start projects with low additional costs. This increases the expected return on R&D investment. 

(Cost sharing) 

3) Commissioned R&D signals future demand in the public sector and demand for goods and services 

diverted to the private sector. Accordingly, this increases the expected return on R&D investment. 

(Pump-priming effect). 

Another important channel whereby government projects benefit private R&D is the 

promotion of trust among collaborative R&D players (institutional-building trust), which enhances 

their social network for innovation.  For example, Darby et al. (2003) empirically analyzes the effect 

of the Advance Technology Program (ATP) on firms’ innovation and states that “the implicit design of 

ATP encourages firms to relax their boundaries and share knowledge. Firms participating in ATP gain 

from the project, learn from each other, and become better at innovating.” (Darby et al.: 2003, p.5).  

The implicit institutional design that promotes trust among participants includes, for example: 

- Third-party (ATP) monitoring of participants’ behavior in joint ventures to ensure cooperation 

(Zucker et al., 1996); 
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- Administrative structures and agreements such as intellectual property agreements, joint venture 

administrative structures to increase confidence in successful coordination (Das and Teng, 1998). 

 Compared to the large volume of theoretical literature that has been developed so far, little has 

been done to empirically test the validity of these theories using a relatively comprehensive dataset.  

There are, however, some exceptions.  For example, Branstetter and Sakakibara (1998) uses a sample 

of 145 government-sponsored R&D consortia in Japan and finds that frequent participation in these 

consortia has a positive impact on the level of research expenditure and research productivity.  Also, 

Branstetter and Sakakibara (2002) uses the same dataset and finds that the outcomes of consortia are 

positively related to the level of potential spillovers within consortia and negatively related to the 

degree of product market competition among participating firms.  

 These empirical studies provide valuable insights on the effects of government-sponsored 

consortia. Yet it is important to note that one can also find many cases of research collaboration 

between firms without government involvement. Thus, even if we find positive effects of government-

sponsored consortia on the level and productivity of R&D, it does not necessarily justify government 

involvement, as these examples of government-sponsored R&D collaboration could have been 

voluntarily realized by the decisions of private firms. Thus, in the later part of this paper, we conduct 

an empirical analysis that compares the two types of R&D collaboration: government- coordinated 

R&D collaboration (government-sponsored consortia) and market-coordinated R&D collaboration 

(R&D collaboration among firms without government involvement). 

 

1.2 Overview of the robot technology related government-sponsored R&D consortia in 

Japan 
There has been a series of new movements in R&D and dramatic technological advances in 

robotics technologies since the early 1980s. Namely, many firms have invested a lot of effort inventing 

service robots, which can be used outside factories, in places such as households and public areas, as 

well as new types of industrial robots characterized by more autonomy. These two types of robots 

have been categorized as “next generation robots.”  The R&D in these new technologies in RT has 
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actually attracted a great deal of public attention, and central and local governments support this 

industry in the form of public projects and subsidies.  

RT-related public projects have been extended to the domain of various ministries in central 

government.  Among these, only the Ministry of Economy, Trade, and Industry (METI) and the 

Ministry of Internal Affairs and Communication (MIC) have had relatively comprehensive views on 

industry-wide technological development, and the biggest share of the budget of the RT-related 

projects is assigned to METI.  Our empirical study focuses on the projects led by these two ministries 

that have been characterized by important developments in their goal and design, as detailed below. 

We mention briefly here the projects in other ministries (the Ministry of Education, Culture, Sports, 

Science and Technology, the Ministry of Health, Labor and Welfare, the Ministry of Land, 

Infrastructure and Transport, and the Ministry of Agriculture, Forestry and Fisheries), which are more 

focused on very specific issues which relate to RT.   

 

Public Projects by METI. Most of the RT-related public projects which are planned by METI are 

carried out by its R&D agency, NEDO. One can see the change in the nature of the involvement of 

METI and NEDO on RT in the later 1990s when the Humanoid Robotics Projects or HRP (1998-2002), 

which was the first comprehensive project, was implemented. In the pre-HRP period, METI had 

conducted various RT-related projects with very specific purposes, and there was no general strategy 

on the development of the industry. The projects that were carried out in this period include the “Robot 

for Hazardous Zones” (1983-1991), “R&D on Micromachine Technology” (1991-2000), the “Mobile 

Meal Delivery Robot for Aged and Disabled People” (1995-1999), and “The Surgery Support System 

for Brain Tumors” (1998-2000). 

The HRP project was the first comprehensive project which had an industry-wide strategic 

view.  The purpose of the project was to develop humanoid robots, such development being thought 

likely to bring about significant technological breakthroughs and various commercial applications, 

such as security services for plants, construction work, nursing care support, and management services 

for building or houses. Various manufacturing firms participated in this project, including Honda, 

which was considered to be the leading firm in this field. The development of comprehensive 
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hardware (HRP-2) and comprehensive software (OpenHRP) are examples for the outcomes of this 

project. Even though this project achieved some of its technological goals, it did not generate any 

commercial outcomes. There has been criticism that the goal of the project was too vague, and that 

there was no clear view of how to connect the R&D to commercial applications. 

The implementation of post-HRP projects has reflected these evaluations of the HRP project 

and has focused more on problem-finding and -solving and on practical uses of robot technologies. In 

2002, the 21st Century Robot Challenge Program was established. It connected all the related robot 

projects (Figure 1). A main characteristic of this program is the aim to do research on the common and 

basic technologies necessary for the development of robots. It includes the “Humanoid Robot Project” 

(1998-2002), the “Project for the practical application of Next generation robots” (2004-2005), and the 

“Development of a Software Infrastructure for robot systems” (“RT Middleware project,” 2002-2004). 

 

=== Insert Figure 1 around here === 

 

In 2003, the first meeting of the Robot Vision Kondankai (committee) was held, with 

important figures in the academic and business worlds discussing the problems faced in this field.6  In 

2006, METI proposed a New Industries Creation Strategy (NICS), and RT was selected as one of the 

priority industries.  The recent RT projects have been carried out based on the proposals laid out in the 

committee reports and the action plan in the NICS.  One characteristic of these public projects is the 

division of technological themes. Currently, the themes in the whole project are grouped into 

systematization technology, base technology, and elements technology, and the targets of each theme 

and the relation between them is clearly specified.  The other characteristic is that users of the robots 

(such as securities companies) as well as the manufacturers are stimulated to take part. This is an 

attempt to integrate the user’s point of view into the projects to realize practical applications out of the 

projects. 

 

                                                 
6 Another committee for an RT-related project (Robot Policy Kenkyukai) was established in 2005.  
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Public Projects by MIC. MIC has been engaged in public projects on network robots, which can 

provide a high quality of services by using a network. As it involves communication technologies, in 

which MIC has administrative authority, the public policies for the network robots at the central 

government level have been solely administered by MIC.  In 2004, MIC started a network-robot-

related R&D project, “Network Robot with Ubiquitous Network Technologies and Robot 

Technologies.” The target of this project is supposed to establish the necessary component technology 

to materialize network robots conducting R&D on ICT by 2008.   

MIC administers the National Institute of Information and Communications Technology 

(NICT) as an incorporated administrative agency, and the robot-related projects which were planned 

by MIC have been carried out by NICT.  

 

Public Projects by MEXT (the Ministry of Education, Culture, Sports, Science and Technology). 

There have been two major projects funded by MEXT: the “MEXT Special Project for Earthquake 

Disaster Mitigation in Urban Areas” (DDT Project) and “Bio-Mimetic Control Research.” The DDT 

Project is aimed to promote R&D for disaster mitigation in urban areas, and one of its programs 

includes robotics-related technology.  This program has been administrated by a Non-Governmental 

Organization, the International Rescue System Institute (IRS), and was been carried out between 2002 

and 2007. Bio-Mimetic Control Research was conducted by Riken, which is an Independent 

Administrative Institution (IAI) subordinated to MEXT. The main topics of this project include 

biological control systems and biologically integrative sensors and the aim of the project is to create 

advanced engineering systems such as a soft human interactive robot.  In addition, certain (small) 

robotics-related research programs have been funded through JST, a project-oriented funding agency 

(IAI) under MEXT.  

 

Other Public Projects. The Ministry of Land Infrastructure and Transport is conducting two projects 

which aim to apply robotics-related technologies to construction and infrastructure building, and these 

two are “The Development of IT Construction System by Robotics” and “Research on the Operation 

of and Surveillance by Underwater Robots.” The Ministry of Health, Labour and Welfare (MHLW) 
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funded a research grant, “R&D for Human Body Analysis, Support, and Substitution Instrument” 

(2003-2008), which aims to promote new medical instruments to substitute the human labor and 

support the human body. The Ministry of Agriculture, Forestry and Fisheries (MAFF) funded “The 

Emergent Development of Next Generation Agricultural Machines Project”, which aims to rapidly 

develop high-quality agricultural machines that will save energy, cost, and environmental damage by 

the cooperative research of firms, universities, and governmental agencies such as the Bio-oriented 

Technology Research Advancement Institution. 

 

Inter-ministerial coordination. It is important to note that the public projects of each of these 

ministries have been planned and carried out independently, and there has been virtually no inter- 

ministerial coordination. However, in 2004, the Council for Science and Technology Policy (CSTP) 

decided to promote cooperation among ministries in important technological fields, and RT was 

selected as one of the Cooperative Policy Groups. Based on this, four RT-related public projects were 

carried out in 2004 and 2005 through the funding of MEXT to complement the existing projects. 

CSTP has recently launched a program that evaluates the technology policies of important 

technological fields among the ministries in an attempt to coordinate the various ministries in these 

fields. The actual administrative work for this program is commissioned to JST (Japan Science and 

Technology Agency), an organization related to MEXT. 

 

Characteristics of the firms that are involved with RT and RT-related public projects. There are 

a variety of participating firms in the public projects of RT, and it is possible to categorize them into at 

least three groups. One group is composed of companies that are specialized in RT. They include large 

firms like Fanuc and Yaskawa and a number of start-up companies like Tmsuk. A second group is 

composed of very large companies in the machinery sector (including electrical machinery and car 

industries) like Hitachi, Toshiba, or Mitsubishi Heavy Industries. They are often the clients of the 

firms of the former group and are engaged in RT in an attempt to diversify their activities. The third 

group includes potential users of service robots like SECOM, a security company.  
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Generally speaking, the participants are very big companies, but some robot makers appear to 

be reluctant to be involved in government-sponsored consortia, probably because they are unwilling to 

disclose information. One can also note that there is considerable heterogeneity in participation 

frequency among firms. For example, for 17 commissioned programs between 1991 and 2005, the 

most frequently participating firms are Hitachi (7 times), Toshiba (7), and Mitsubishi Heavy Industries 

(6), whereas Toyota and Sony have never participated.  

 In the following sections, we empirically analyze the RT-related government-sponsored 

consortia. However, due to lack of data, especially regarding patents that are assigned to the consortia, 

we do not cover all RT-related consortia but focus on 12 R&D consortia, as listed in Appendix 1, 

including 9 projects by NEDO (METI) and 3 by NICT (MIC).  

 

 

2. Data 
The main purpose of this paper is to empirically assess RT-related government projects, and our 

empirical strategy is to use information about patents that derive from the public projects and compare 

them with other patents. To do this, we first collected complete data on RT-related patents and 

identified those that derive from public projects. 

 

2.1 The dataset 

We use two complementary data sources: the Industrial Property Digital Library or IPDL (“koho text 

kensaku”) and Standardized Data (“Seiri-Hyojunka Data”). The IPDL data enable us to clearly classify 

4 macro- and 26 micro-technological fields of RT (Figure 2). However, for some reason, the JPO 

(Japan Patent Office) does not give information on 6 categories (“other robots,” “modular structures,” 

“attachments,” “control units operated by foot,” “virtual reality,” and “networking technology”). 7 So 

we limit the analysis to 20 technological fields. Moreover, the IPDL only covers the patents from 

around 1991 and does not contain information on citations. On the other hand, the Standardized Data 

do include such information. Yet we cannot clearly identify the RT-related patents, and it covers 
                                                 
7 We did not receive a satisfying answer from the JPO as to why they are not available. This is probably due to identification 
problems for these six technologies. 
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patents until around 2001. Therefore we have merged these two data sources to get a more complete 

dataset. 

 

=== Insert Figure 2 around here === 

 

We collected 16,736 patent numbers through the IPDL (12,863 patents of the total are matched 

with the Standardized Data). Among these patents, we extracted patents applied for by Japanese 

companies.8 Then, we created unbalanced panel data organized by company and year. We found, 

however, that many firms have only a small numbers of patents and that it is difficult to assess the 

R&D productivity (quality of patents) for these firms. After having analyzed the distribution of the 

number of patents per firm, we found that 5 patents per firm was a meaningful threshold for analysis 

and we have excluded all firms which have less than five patents. In sum, our sample includes 316 

companies and 13,711 patents,9 with a sampling period between 1991 and 2004. 

 

2.2 Definition and distribution of G patents 
As a next step, we identified the patents that came out of the 12 projects by NEDO and NICT 

out of these 13,711 patents. We did this by referring to the official reports of these projects. We define 

these patents as G1 patents and found that there are 94 such patents in the database.  

Table (1) shows the distribution of G1 patents by project, by comparison to that of non-G1 

patents. We find that the ratio of G1 patents is much higher than that of non-G1 patents in some 

technological fields, including mobile robots, artificial intelligence, control of mobile robots, image 

processing, and sound recognition. These technologies are closely related with next-generation robots 

and science (Figure 2). This implies that government projects focus on those frontier technologies 

which are difficult for one company to conduct R&D in.  

 

=== Insert Table 1 around here === 

 

                                                 
8 We checked the inventors of all patents one by one, and created a database on their affiliated companies using various 
search engines (see Lechevalier, Ikeda, and Nishimura (2006) for more details).   
9 Among these patents, some patents overlap because they are collaborative patents. 
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Moreover, as the number of G1 patents is small relative to non-G1 patents (13,711-94=13,617), 

we borrowed the methodology used by Branstetter & Sakakibara (2002) and include the patents 

applied for by participating firms in the targeted technologies during and after consortia as the 

outcomes of these consortia.  We define these patents as G2 patents and the sum of the G1 and G2 

patents as government (G) patents. Similarly, G firms are defined as the firms which applied for at 

least one G patent (G1 or G2).  The definition of G2 patents is further explained in Appendix 2. 

Even though we basically use G1 patents for our empirical analysis, we also utilize G2 patents 

to check the robustness of the results we obtain with G1 patents.10 

 

 

3 Hypotheses and Empirical Specifications 
3.1 Hypotheses  
Based on the discussion in Section 1, we set the following predictions: 

1. Participation in government-sponsored consortia leads to an increase in the research productivity of 

participating firms.  

2. One of the channels through which participation in government-sponsored consortia increases 

research productivity is knowledge spillovers. 

3. As discussed in Section 1.2, the design of government programs on RT has been better articulated 

over time. We hypothesize that the magnitude of the impact of participation in government- 

sponsored consortia on the R&D productivity of firms has changed over time as the design of the 

programs has changed. 

4. The impact of government-sponsored R&D consortia on research productivity differs from the 

market-coordinated type of R&D collaboration. 

 The rest of this section specifies the models we will use to test the hypotheses above. We 

basically follow the technique used by Branstetter and Sakakibara [1998] for our model building.  

                                                 
10 There is another ground to use G2 patents, which stems from the fact that the strategy of the government on patents has 
changed over time.  Branstetter & Sakakibara (1998: 213) points out that “Prior to 1990, many if not most of the patents to 
directly emerge from the research undertaken within government-sponsored research consortia were, by government directive, 
assigned not to the participating firms but instead to the research consortia themselves.” Thus, the change of government 
policy in the 1990s may have led to an underestimation of the outcomes of the public projects if we define them strictly based 
on the G1 definition.   
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3.2. A Model of Research Productivity  

We first specify the model of research productivity. We assume that the productivity of the 

R&D activities is a function of firm level R&D spending and the intensity of participation in consortia. 

 

Ni = f (Ri, Ci)      (1) 

 

where Ni is innovation, Ri is R&D spending, and Ci is intensity of participation to consortia.  We 

assume that this relation is in linear form. 

 

Nit =β0 +β1Rit+β2Cit+μit      (2) 

 

One important problem in estimating this model is which proxy measures for the unobservable 

“innovation” will be used.  Here we use two proxies: the number of claims and forward citations for 

patent.11 The claims in the patent specification delineate the property rights protected by the patent.  

The larger the number of claims, the broader and the greater the expected profitability of an innovation 

is. Forward citations are the number of times that a patent is cited by other patents in the following 

years. Thus, a large number of forward citations suggests that the patent is highly evaluated by others. 

These two variables are considered to be proxies to measure “quality-adjusted R&D 

productivity.” Although the number of patents has often been used as a proxy for “innovation” 

(Sakakibara & Branstetter, 1998, 2002; Darby et al., 2003), this practice has been discussed and the 

numbers of claims and forward citations have been alternatively used as proxies for the outcome of 

innovation activities.12 For example, Tong and Frame (1994) compare the number of claims with the 

number of patents and found that patent claims appear to offer a better indicator of inventiveness than 

the number of patents.13  

                                                 
11 However, as there are considerable citation lags in forward citations, we were not able to get data for the most recent years. 
Therefore, we mainly use the number of claims as a dependent variable and use the number of forward citations only 
complementarily. 
12 The number of citations has been available only recently in the case of Japanese patents. As for the number of claims, 
identification for each patent is very time consuming. This may explain why the number of patents has been preferred in 
many studies. 
13 Likewise, Trajtenberg (1990) shows that there is a close relation between the number of patents weighted by forward 
citations and the social value of innovations in the computer tomography scanner industry. Another example is the paper by 
Lanjouw and Schankerman (2004), who construct a composite index which includes claims, forward citations, and backward 
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Concerning R&D spending, it would be desirable to collect data on R&D expenses in the RT 

field by each firm. It is, however, very difficult to obtain these data.  We may be able to use the total 

R&D expenses of each firm, but it appears not to be appropriate as the R&D activities in the RT area 

seem to be a very small part of the total R&D activities of the firms, especially in the case of large 

firms involved in RT. In order to solve this problem, we make use of the number of inventors as a 

proxy for R&D expenses.14 This variable is considered to be a proxy for the scale of a research project 

and the accumulation of human capital, as the larger the number of inventors of a patent, the bigger the 

research project is. Goto et al. (2006) and Mariani and Romanelli (2006) use the number of inventors 

as a proxy for R&D expenses and find that this variable has a significant and positive impact on R&D 

productivity.  

There is one important issue in estimating this model, which is the possibility of endogeneity 

of the second explanatory variable, Cit.  It is natural to think that the selection of the participating firms 

is affected by multiple factors. In particular, METI officials are likely to assign projects to firms with 

high research quality (subjective or not).  Accordingly, even if we find there is positive relation 

between research productivity and the intensity of participation, it may be high research productivity 

that leads to the higher participation intensity, rather than the other way around.  The estimates of (2) 

would then be inappropriate (Branstetter & Sakakibara, 1998). 

 We thus estimate the following two models, instead of (2), to deal with this problem.  First, we 

assume that the unobserved “quality” of the firm i affects the intensity of the participation of firm i. In 

other words, there is an unobserved time constant firm effect which is correlated to the explanatory 

variable, Cit. That is, 

 

Nit =β0 +β1Rit+β2Cit+qi+vit      (3)   

 

                                                                                                                                                         
citations. They find that the most important indicator for the quality of patents is the number of claims in most industries 
except in the case of the drugs industry. 
14 In the subsequent econometric analysis, we also use the number of patent applications as a proxy for R&D expenses in the  
RT field. The correlation between the number of patent applications and R&D expenses is high (0.982 in Japan, Tong and 
Frame, 1994). In fact, the estimation results do not change much when we use the number of applications instead of the 
number of inventors.  
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where qi is a time constant quality of firms and vit is idiosyncratic errors. To estimate this model, we 

use a fixed effects estimator which is a consistent estimator if this is the case.  

The other approach is to assume that the explanatory variable, Cit, is correlated with a time-

variant unobserved effect, qit.  If this is the case, the fixed effects estimator is deemed to be 

inconsistent, as the explanatory variable and disturbance are contemporaneously correlated. In order to 

solve this problem and provide a consistent estimation, we conduct a 2SLS estimation following 

Wooldridge (2002).  This can be done by obtaining the predicted values of Cit, regressing against the 

instrument variables which are correlated with Cit but exogenous to the dependent variables. 

 

ititkit sInstrumentC εθ +=∑
)

     (4) 

 

Then we estimate the original model using the predicted values of Cit, which were obtained by (4).  

 

itititit wCRN +++=
)

210 βββ      (5) 

 

The dependent variable of the models (the number of claims) is a count variable that takes on 

nonnegative integer values and its distribution does not follow normal distribution.  The Poisson 

Regression and Negative Binomial Regression models are the two common estimators for count data.  

One assumption of the Poisson Regression model is that its mean is equal to its variance.  Looking at 

the characteristics of our data concerning the number of claims, it appears that the observed variance is 

greater than the mean (the sample average is 32.3 and the standard deviation is 91.6). The estimation 

of the Poisson Regression model seems to lead to overdispersion. Thus, we choose to use the Negative 

Binomial Regression model. 

 

3.3 A Model to Estimate Spillover Effects  
To see whether the impact on knowledge spillovers is one of the channels of the effects of 

consortia on research productivity, we introduce a variable, the spillover pool, as suggested by Jaffe 
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(1986).   The spillover pool is an indicator to measure potential spillover effects that a firm can gain. 

The spillover pool for firm i in time t is formularized as: 

 

∑
≠

=
ji

jtijit RTK        (6) 

 

where Rj is the number of patent applications of firm j , and Tij is  the “technological distance” 

between firms i and j.  It can be thought as the sum of knowledge stock of other firms weighed by the 

technological distance to firm j. 15  

 We assume that a higher intensity of participation leads to a higher absorptive capacity to 

utilize the potential spillover pool; in other words, frequent participation will yield higher research 

productivity elasticity.  Thus, the research productivity function will be  

 

Ni = f (Ri, (Ki Ci))       (7) 

 

We assume the function takes linear form: 

 

Nit =β0 +β1Rit+β2Cit *Kit +μit       (8) 

 

where Nit is innovation, Rit is R&D spending, Cit is intensity of participation, and μit is an error term 

with fixed effects and random errors. 

 

3.4 Impact of the evolution of the program 

 As indicated in Section 1.2, a conspicuous change in the nature of the RT-related projects of 

METI occurred in the late 1990s. Until that time, there was no ground design for the development of 

RT, but, by that time, METI started to have an industry-wide strategic view, which can be seen 

through the launching of the HRP project (1998) and the formation of a kondankai (committee) in 

                                                 
15 A more detailed derivation of the spillover pool is provided in Appendix 3.  
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2003.  We hypothesize that the effects of participation in public projects on research productivity 

differ between these periods as the nature of the projects changed.16  

To test this hypothesis, we use year dummy variables and a Chow test to see if there is any 

structural break in the impact of participation during the sample period. We first create a dummy 

variable, from92, which takes 1 for the period after 1992 and takes 0 before this period.  Then, we 

include the cross term of Cit and the dummy variable, from92, into the model (8). Therefore, we 

estimate the following model: 

 

Nit =β0 +β1Rit+β2Cit+β3Cit *from92+μit      (9) 

 

If the coefficient of the cross term, Cit *from92, is statistically significant, it implies that there 

is a difference in the impact of participation before and after 1992. We then create dummy variables 

from93, from94…from04, in the same way as from92: they take the value 1 after the year indicated in 

the names of variables and 0 before.  We replace the dummy variables one by one and estimate models 

with each dummy variable.  

Furthermore, based on these regressions, we conduct a Chow test. By looking at the 

coefficients of each estimated model and the result of the Chow test, we can see if there is a structural 

break in the impact of participation during the sample period and when the structural break happens. 

 

3.5 Impact of Two Types of Collaboration on Spillover Effects  

We define government-sponsored consortia - or government-coordinated collaboration - as 

one type of collaborative R&D activities. We hypothesize that the impact of government-coordinated 

collaboration differs from that of collaborative research among firms - or market-coordinated 

collaboration. To test this hypothesis we estimate the following equation, which is based on equation 

(8), which allows us to take into account market-coordinated collaboration and compare its impact to 

that of government-coordinated collaboration: 

                                                 
16 This discussion basically concerns the 9 METI projects of our sample of 12 consortia. Regarding the 3 MIC projects, it is 
difficult to discuss whether their nature changed, as they started after 2000. However, we may consider their organization to 
perhaps have been indirectly influenced by METI’s experience in the field, even if the coordination between the two 
ministries is limited. 
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 Nit =β0 +β1Rit+β2Kit *CPit+β3Kit *CGit+μit     (10) 

 

where CGit is the frequency of participation in the government-sponsored consortia for firm i in time t 

and CPit  is the frequency of collaboration with other firms for firm i in time t. 

One problem in estimating this equation is that information on cooperation among firms is not 

readily available, as the firms are usually reluctant to disclose it. We therefore identify collaborative 

R&D among firms by looking at information on the inventors of each patent. We define a 

“collaborative patent” as a patent that includes more than two inventors, who are affiliated to different 

organizations.17 Then, we use these “collaborative patents” as proxies for collaborative R&D among 

firms. 18   

 Another point concerns the distinction between the effects of past and current participation on 

research productivity. Experience can be regarded as a proxy for the transaction cost of participating in 

government projects. Prior experience in negotiating, writing contracts, participating in a committee, 

and collaborating with participants will lower the cost and help participants to collaborate smoothly 

with project members and government officials. That is why we think that it is important to 

differentiate the effect of past participation from current participation, by using two kinds of variables 

for CGit and CPit.  The first type is the accumulated number of G patents and collaborative patents 

applied by firm i before time t. It allows us to analyze the impact of past involvement in collaboration 

on research productivity.19  We name these variables PCGit and PCPit respectively. The second type is 

the number of G patents and collaborative patents which are applied for by firm i in time t. We name 

these variables KCGit and KCPit respectively.  This second type of variable is used to see the impact of 

                                                 
17 Here, we focus on patents applied for by at least one firm but we include also the cases of collaboration of firms with 
universities and/or public research institutes. 
18 It is important to note that collaborative patents are a subset of collaborative R&D, as not all R&D activities lead to a 
patent application.  Therefore, to analyze both types of collaboration at the same level, we use the number of patents 
generated by the participating firms in a consortium for estimating the impact of government-sponsored consortia, instead of 
the number of instances of actual participation.  Using patents as an indicator of participation in public consortia is a much 
more restrictive way than using the number of actual incidents of participation and is very similar to our definition of private- 
led collaboration.  
19These are actually the data commonly used as an indicator of the stock of knowledge. Thus, we assume that some of the 
knowledge becomes obsolete over time, which is a common assumption to measure the stock of knowledge, and that the 
depreciation (obsolescence) rate is 10% per year. In fact, we cannot identify the correct depreciation rate in RT fields, so we 
also conduct estimations in the cases of 20% depreciation rates and without a depreciation rate. The results are not affected by 
these changes.  
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collaboration activities on the productivity of contemporary R&D activities.  The equations to be 

estimated become: 

 

Nit =β0 +β1Rit+γ0Kit +β2 PCGit +β3 PCPit +β4Scit +μit    (11-1) 

Nit =β0 +β1Rit+γ0Kit +β2 KCGit +β3 KCPit +β4Scit +μit    (11-2) 

 

We also test if the collaborative R&Ds increase research productivity through the spillover 

augmenting effects by estimating the following equations: 

 

Nit =β0 +β1Rit+γ0Kit+γ1Kit *ＰCGit+γ2Kit *PCPit+μit    (11-3) 

Nit =β0 +β1Rit+γ0Kit+γ1Kit *KCGit+γ2Kit *KCPit+μit    (11-4) 

 

The purpose of each empirical test is summarized as follows: 

11-1: Test if past participation affects R&D productivity 

11-2: Test if current participation affects R&D productivity 

11-3: Test if past participation affects R&D productivity through spillover effects 

11-4: Test if current participation affects R&D productivity through spillover effects 

 

 

4. Results 
4.1. Basic Statistics of G and NG Firms 

Table 2 shows the basic characteristics of patents applied for by firms that have participated in 

public projects (G firms) and firms that have never participated in public projects (Non-G firms).  First, 

we note that the average number of patents per firm is much higher for G firms than Non-G firms (152 

against 29). The number of patents can be regarded as a measure of the scale of R&D activities for RT 

by firm. Thus, the data show that G firms tend to have been involved in RT-related R&D on a much 

larger scale than Non-G firms. Second, the average number of private-type collaborative patents is 

larger for G firms than Non-G firms (14 or 11, depending on the definition of G patents, against 4).  

This means that the participants in public projects tend to be more involved with collaborative R&D 

outside of the public project than non-participants. It means also that there is no obvious substitution 

effect of private-led collaboration by collaborative-led collaboration for the G firms.  
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=== Insert Table 2 around here === 

 

 Another important issue concerns the comparison of quality of patents for these two types of 

firms. In Table 3, five indicators of patent quality for G and Non-G firms are summarized.  The 

average number of each indicator is a little higher for G firms than Non-G firms.  To see if these 

indicators are statistically different between G firms and Non-G firms, we calculated two sample mean 

comparison tests.  Whereas the numbers of forward and backward citations are not significantly 

different between the two types of firms, we find that the numbers of claims, inventors, and 

technological fields are statistically significantly higher for G firms than Non-G firms at a 1% 

significance rate.  This may indicate that the research productivity of G firms is intrinsically higher 

than that of Non-G firms.  Thus, we cannot reject the possibility that firms with higher research 

productivity tend to be selected as participants in public projects. This may cause an endogeneity 

problem in our models, something that we will try to deal with in the following section (4.2).  

 

=== Insert Table 3 around here === 

 

We also conduct a χ square test which investigates whether the technological fields of patents 

applied for by G firms and Non-G firms differ.  The data show that both groups have a similar 

tendency in patent applications in terms of technological fields.  Therefore, there appears to be no 

problem using Non-G firms as a control group in terms of technological specialty. 

 

4.2. Effect of Participation on Research Productivity 

We first conduct an empirical analysis to test the hypothesis that an increase in the intensity of 

participation is associated with an increase in the productivity (or quality) of the firm’s R&D activities.  

The equation we estimate is based on (2) and is of the following form: 

 

 Nit =β0 +β1Rit+β2Cit+β3Scit +μit       (12) 

 

where: 
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Nit  is the number of claims of patents generated by firm i in time t; 

R is the number of inventors for the patent; 

Cit is the accumulated number of consortia in which a firm i has been involved before year  ;20  

Scit is the number of patents in the “science based” technologies among the sub-types of RT 

technologies. We include this variable as a control variable as it seems to be related to the 

productivity of technology or the number of claims. 

 

 Table 4 presents the results of the estimations using fixed effects and random effects.  As 

discussed earlier, the intensity of participation is likely to be correlated to the unobserved research 

quality of each firm. In this case, the random effects model is inconsistent and the fixed effects model, 

which controls unobserved time invariant effects, is more appropriate.  In fact, this is confirmed by a 

simple Hausman specification test, which suggests that the random effect model is misspecified. 

 

=== Insert Table 4 around here === 

 

 The results show that the term of intensity of participation (C) is positive and statistically 

significant, indicating that the participation of an additional consortium in the past has a positive 

impact on the quality of the R&D activity of firms.  Using the coefficient estimated by the fixed model, 

the number of claims of patents generated by a firm in time t increases on average by 2.3% (= 

[exp(0.1547)-1]×0.14) as a result of additional participation in the past. Obviously, this figure is not so 

large. 

 One thing we have to note is that there may be a sampling bias if we include non-participating 

firms into the dataset, as data do not show how great the magnitude of the impact would be if non-

participants were involved with the projects.  As there is a relatively large number of non-participating 

firms in the dataset, there are many cases where explanatory variables take a 0 value, and this may lead 

to the underevaluation of the impact of the explanatory variable. Therefore, we also estimate the same 

model using data which include only the participating firms in order to get more robustness for our 

                                                 
20 Alternatively, accumulated years of participation in the consortia can be used as an explanatory variable, yet the conclusion 
is almost the same in this case, too. See Table A1 in Appendix 3. 
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estimation. The results of this estimation are presented in Table A2 of Appendix 3.  Here again, the 

results show that impact of participation in consortia has a positive and significant effect on research 

productivity.  Moreover, in this case, the number of claims of patents generated by a firm in time t 

increases on average by 13% as a result of additional participation in the past, which is a much larger 

figure than in the previous estimation (Table 4).21  

As noted earlier, there may be a problem of endogeneity for Cit. 22 The government decides 

which companies take part in which projects, and this assignment is not random. Governmental 

officials tend to select firms whose R&D productivities are high and who have participated in projects 

more frequently.  In order to solve this problem and check the robustness of the model, we conduct 

2SLS in the following way: 

 

itiddktiitititit YCScCPRC εθθθθθθ ++++++= ∑−,43210

)
   (13-1) 

itiddititit wYCRN ++++= ∑θβββ
)

210     (13-2) 

 

where Rit and  Scit, are the same definitions as before; CPit is the frequency of collaboration with other 

firms for firm i in time ;. Cit-k is the k-lagged values of Cit; and Yit is the year dummy variable.  

We expect that the larger companies tend to participate in government-sponsored projects 

more often, and that if firms have more experience in collaborative R&D in the past, they tend to be 

more willing to take part in projects. Moreover, most of the targeted technologies of projects are 

science-based technologies, which are more closely related to next-generation robots. Thus, companies 

which have a higher ratio of science-based technologies related patents to total RT patents tend to 

participate in projects more often.  Furthermore, concerning the k-lagged variable Cit-k, , we suppose 

that there is some “bureaucratic” inertia in the selection process, as suggested in Branstetter and 

                                                 
21 It is difficult to say more about this figure and to compare it more precisely to the former figure. Whether it is large or 
small depends on the R&D activity of participating firms. For companies with many claims of patents, an increase of 13% in 
the number of claims as a result of additional participation is significant. However, for companies with a small number of 
claims, what they may expect to benefit from their participation in a government program may be considered relatively 
insignificant. 
22 We conduct a Hausman-Wu Test for the problem of endogeneity and the null hypothesis is rejected. This means that C, 
participation,  appears to be endogenous to the model. 
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Sakakibara [1998]. Firms which were frequently selected as participants in projects in the past are 

more likely to be selected in projects given their research quality.23  

Table 5 reports the result of fixed effects IV estimation.  In the table, column 1 gives the 

results of the first stage within regression. In this model, we include the lag 3, lag 4, and lag 5 

variables of Cit. The results show that the size of companies and the degree of science orientation in 

technology have a significant impact on intensity of participation, while the past experiences of 

collaborative R&D do not affect it. 

 

=== Insert Table 5 around here === 

 

The model of column 2 in Table 5 reports the results of 2SLS, which uses the results of the 

first stage 1. Cit has a significantly positive impact on quality-adjusted R&D productivity. These 

results indicate that the intensity of participation affects R&D productivity, even after the model is 

adjusted to the endogeneity issue.24. 

 

4.3 Impact on the Spillover Effects 
We then conduct an empirical test to see if the impact of consortia on research productivity includes 

the augmentation of knowledge spillover effects. The equation we estimate is  

 

 Nit =β0 +β1Rit+γ0Kit+γ1Kit *Cit+β2Scit +μit     (14) 

 

which is based on (8). The coefficient of the interaction term, Kit *Cit, represents the magnitude of the 

change in innovation productivity elasticity to participation for a given level of potential knowledge 

                                                 
23 If we exclude the variables CPit and Scit, the results do not change. 
24 However, it should be noted that this result depends on the robustness of the results of estimation of the first stage, for 
which we concluded that the lag 3, lag 4, and lag 5 of Cit are exogenous to R&D productivity.  When longer lagged variables 
(e.g., from lag 6 to 8) are included in the first stage of the 2SLS model, we cannot conclude that the intensity of participation 
has a positive impact on R&D productivity because the coefficient of Cit is no longer significant. We also estimated the same 
model using only the participants in projects as the sample. In this case, the result is almost same as in the previous case (but 
the coefficient of Cit is larger, about 31). However, if we take longer lagged variables (from 6) as instruments in this 
estimation, the coefficients of those variables in the first stage are not significant (or 10% significant). Thus, there may be a 
problem of weak instruments for these longer lagged variables and they are not appropriate as instruments. Finally, let us 
mention that we have three indicators to measure the intensity of participation, accumulated numbers of participated projects 
(C), accumulated years that the firm participated (CY), and the number of projects the firm participates in at time t (CC). We 
also used CY and CC to estimate the 2SLS model. In the case where we use CY, the result is almost the same as the case of 
using C. In the case where we use CC, the coefficient of CC is positively significant if we take longer lagged variables (from 
6) as instruments.  
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spillovers. In other words, the coefficient measures the impact of participation on the absorptive 

capacity of a firm in terms of utilizing knowledge outside of the firm.25  

The results in Table 6 show that the interaction term is positive and statistically significant, 

indicating that participation increases the knowledge spillovers. Here again, according to the Hausman 

specification test, the random effect model is not appropriate. However, we cannot see much 

difference in the coefficients between fixed and random models, thus the selection of estimation 

methods between them does not show bias in the estimation. 

 

=== Insert Table 6 around here === 

 

The results suggest that the impact of participation in consortia on research productivity 

includes the channel of raising the incoming spillovers of the participating firms. Using the coefficient 

estimated by the fixed model, the number of claims of patents generated by a firm in time t increases 

on average by 1.6% (= [exp(0.0002)-1]×80.76) as a result of additional participation in the past for a 

given potential spillover level. Here again, this number is apparently relatively small. 

 As in the case of research production function, we also estimate the same model using data 

which include only the participating firms to get more robustness for our estimation. The results of this 

estimation are presented in Table A4 of Appendix 3.  The results indicate that participation in 

consortia has a positive and significant effect on research productivity through the knowledge spillover 

augmenting effects. The result shows that the number of claims of patents generated by a firm in time t 

increases on average by 9.5% as a result of additional participation in the past, which is much larger 

than the results reported previously, in Table 6. 

 

 

4.4 Impact of the evolution of the program 
We have used the number of claims as an indicator to measure research productivity in the 

estimations so far.  Another commonly used indicator for quality-adjusted R&D productivity is the 

                                                 
25 We used the accumulated number of consortia for Kit* Cit.  Alternatively, accumulated years of participation in the 
consortia (CY) can be used for variable Kit* Cit; the conclusion is almost the same. See Table A3 in Appendix 3. We do not 
include Cit as an explanatory variable for the observed existence of multicollinearity with the interaction term Kit *Cit. 
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number of forward citations. We also estimated (12) and (14) using the number of forward citations as 

a dependent variable. Yet, in these cases, we cannot find any positive relation between intensity of 

participation and research productivity.  This may, however, be due to the fact that the sample period 

for this estimation is only up to 1997 owing to the lack of data on forward citations. As discussed in 

Section 1.2, the design of government programs on RT changed dramatically in the late 1990s.  The 

non-significant impact on forward citations may stem from the fact that the impact of participation was 

much lower before the late 1990s.  

To further investigate this point and to check whether the impact of participation will differ as 

the design and goals of the government programs evolve, we estimate the following model: 

 

Nit =β0 +β1Rit+β2Cit *(fromXX)+μit        with   XX=94, 95,…04   (15) 

 

where Nit  is the number of claims; Cit is the number of consortia firm i participated in in time t (and 

not the accumulated number, as in the previous estimations). fromXX are year dummy variables, which 

take the value 1 after the year indicated in the name of variables. 

The estimation result is reported in Table 7. We find that the cross term of Cit and the dummy 

variables from92…from97 are insignificant or weakly significant.  Yet the cross term of Cit and 

from98 is significantly positive, indicating that the impact of participation on research productivity 

significantly differs before and after 1998. Also, we find that the participation terms with 

from99…from04 are positively significant at the 1% level. Thus, we can infer that participation in 

public projects began to have much more impact on research productivity after 1998.  

The analysis above indicates that the impact of participation has changed after 1998, yet we 

cannot be certain in which year the change occurred. To examine the year of structural break, we 

conduct a Chow test based on the estimation results above. The results of the Chow test show that the 

chi-squared value in 2000 is the highest (87.42, P>chi2=0.000), indicating that the structural break 

occurred in 2000. 

 

=== Insert Table 7 around here === 
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These results suggest that the impact of participation on research productivity is significantly 

higher in the latter part of the sample period, and the structural break is likely to have happened around 

2000.  We reported that there is no impact of participation on the number of forward citations, whereas 

there is a positive impact on the number of claims.  The difference in these results is likely to stem 

from the fact that the sample period for the model with forward citations is only up to 1997 and the 

impact of participation on research productivity is quite small up to the late 1990s. As mentioned 

earlier, it corresponds to the time when the policy of METI became more articulated and focused on 

research in RT in order to create a new market for service robots. The HRP project, the first 

comprehensive project, started in 1998.  The themes of subsequent projects were organized on the 

basis of a clearer strategy regarding the development of the industry.  Although these results should be 

interpreted cautiously, the difference in the effects on research productivity before and after this time 

appears to stem from these changes in the nature of the projects and the involvement of METI. 

 

4.5 Government-Coordinated Consortium and Market-Coordinated Collaborative 

Research  
As discussed earlier, government-sponsored consortia can be thought as one kind of collaborative 

research. In this section, we estimate and compare the impact of both government-sponsored consortia 

(or government-coordinated collaboration) and collaborative research among firms (or market-

coordinated collaboration) on research productivity.  

 For this purpose, we estimate the following equations which are the empirical versions of 

equations (11-1) to (11-4): 

 

Nit =β0 +β1Rit+γ0Kit +β2 PCGit +β3 PCPit +β4Scit +μit    (16-1) 

Nit =β0 +β1Rit+γ0Kit +β2 KCGit +β3 KCPit +β4Scit +μit    (16-2) 

Nit =β0 +β1Rit+γ0Kit+γ1Kit *ＰCGit+γ2Kit *PCPit+μit    (16-3) 

Nit =β0 +β1Rit+γ0Kit+γ1Kit *KCGit+γ2Kit *KCPit+μit    (16-4) 

 

where: 
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PCGit = the accumulated number of G1 patents for firm i applied before time t with a depreciation rate 

of 10%.  

PCPit = the accumulated number of collaborative patents for firm i applied before time t with a 

depreciation rate of 10%.  

KCGit = the number of G1 patents for firm i in time t  

KCPit = the number of collaborative patents by two or more firms for firm i in time t  

 

 The estimation results are presented in Table 8, and statistical implications based on the 

estimations are summarized in Table 9. For all the estimations, the Hausman specification test suggests 

that the random effect models are not appropriate, so we only present the results of fixed effects 

models. The results show that the variables which are related to participation in government projects 

are positive and significant for all the models.  This implies that participation in public projects both in 

the present and in the past positively affects the quality of patents, and one channel of impact is the 

spillover augmenting effects.  

 

=== Insert Tables 8 & 9 around here === 

 

On the other hand, market-coordinated collaboration appears to have a significant impact on 

the quality-adjusted productivity of firms only in the case of contemporary R&D activities, as past 

experiences of collaboration do not affect the productivity of research. 26  Moreover, there is no 

evidence of spillover augmenting effects.27  

 In the estimation above, G1 patents are used to define the variables. We also estimated the 

same model with the G2 definition and found that the statistical implication is not different from the 

models with G1 patents.  These results indicate that the impact of market-coordinated collaborative 

                                                 
26 This result is basically consistent with the findings of Lechevalier et al. (2007), who find evidence of a positive impact of 
current market-coordinated collaborative R&D on the quality of patents, but cannot find any evidence of a positive impact of 
past collaborative R&D in this case. 
27  As in the previous cases, we also estimate the same models using data which include only firms participating in 
government programs to achieve greater robustness for our estimation.  The results are summarized in Table A5 of Appendix 
4.  Some of the variables we found previously significant become insignificant.  The variables that are related to collaborative 
patents are insignificant in all the models, indicating that there is no impact of market-coordinated collaboration on research 
productivity in any way.  Also, participation in public projects in the past seems not to affect research productivity, whereas 
current involvement still has an impact on it. 
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research on research productivity is relatively limited compared to the government-coordinated 

collaboration. It is possible to think of several potential reasons for the observed difference in the 

impact between the two types of collaborative research.  

First, government tends to pick up R&D themes which are closer to the technological frontier, 

and the goals of government projects tend to be quite ambitious.  As shown in Appendix 1, the themes 

of public projects are very general, and the effects of such research tend to extend to the whole of an 

industry or society.  This kind of research is likely to generate significant spillover effects but is often 

inappropriate to the R&D of private firms, as it tends to benefit to other firms. Also, as shown in Table 

1, the target technologies of public projects tend to be more science-based technologies, such as 

mobile robots, control of mobile robots, and image processing rather than other R&D.  The R&D 

projects on science-based technologies are potentially more risky, even though the benefits and 

learning effects tend to be bigger.  It is often difficult for firms to undertake a highly risky R&D, but 

the firms may be able to engage in risky R&D if it is a public project, as the publicly sponsored 

projects signal future demand and increase the expected return on R&D investment (the Pump-

Priming effect).  Also, the public funds expended on the projects will decrease the firms’ costs for 

R&D and increase their incentive to participate (Cost Sharing). 

Second, as participation in public projects goes with an ex ante agreement on the ownership of 

research output, there is less risk of opportunistic behavior and necessity of bargaining over the 

research outcome. Having monitoring and evaluation by a public institution also promotes cooperation 

among the participants.  Accordingly, the participants can be more eager to collaborate with other 

participants, which will promote knowledge sharing and more knowledge spillovers (institutional-

building trust).  In the case of RT-related public projects, special committees whose members include 

external personnel were usually formed to specify research plans and organizations, monitor the R&D, 

and conduct project appraisals. For example, the plan of the HRP project was decided by the HRP 

Development Promotion Committee. The HRP Technology Committee and HRP Research Committee 

monitored the research of the project. These monitoring mechanisms are thought to promote trust and 

knowledge sharing among participants. 
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Third, the difference in relative scale of research between the two types of collaboration we 

distinguished might have affected their respective impacts. As shown in Appendix 1, a relatively large 

number of firms participate in public projects, whereas R&D collaboration among firms is typically 

undertaken by only two partners in most cases.  If the number of participating firms is larger, the 

accumulated level of knowledge of the participants is likely to be larger, and there are more chances 

for each participating firm to access complementary technology; thus, the spillover effects tend to be 

larger.  

Finally, government involvement may have decreased the coordination costs which were 

necessary to form R&D collaboration. The coordination costs include the search costs to find a proper 

partner, the cost of negotiations on the allocation of the research results, and the management costs for 

the projects. The interviews we conducted with a number of related firms indicate the existence of 

such coordination costs. Most of the interviewees claim that “there is less collaboration in R&D 

among firms than there should be,” and that one reason for this is that “the negotiations for the 

collaboration, especially on the allocation of research results, are troublesome tasks.”  One interviewee 

points out that collaboration among firms tends to be easier when the government or a large firm is 

taking a lead in negotiation. As these coordination costs will become larger as the number of 

participants becomes larger, the government might have played the role of coordinator, bearing these 

costs and helping to realize larger scale R&D collaboration that cannot be undertaken by the 

coordination by markets.  

 

 

Conclusion 
 In this article, we have proposed an evaluation of government-supported R&D consortia in 

Japan based on the methodology developed by Sakakibara & Branstetter (1998). We have focused on 

the case of robot technology, which has rarely been an object of analysis from this point of view. Our 

main methodological contribution is the use of indicators of the quality of patents (numbers of claims 

and citations) instead of number of patents as indicators of the outcomes of the programs. This allows 

us to provide an estimation of quality-adjusted research productivity.  
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 Our findings can be summarized as follows. First, participation in government-sponsored 

R&D consortia tends to lead to an increase in the research productivity of participating firms.  Yet the 

clear impact of consortia on research productivity seems to begin to appear after the late 1990s, when 

the nature and design of METI’s programs changed towards a more comprehensive and systematic 

view of the RT field.  Second, the channel through which the consortia affect research productivity 

includes the increase in incoming spillovers, or a firm’s absorptive capacity to utilize the knowledge 

outside of the firm.  Third, if we divide collaborative R&D into government-coordinated collaboration 

and market-coordinated collaboration, the latter appears to have a limited impact on research 

productivity, whereas the former seem to have a non-negligible impact. 

Finally, this study can be complemented by further research especially regarding the following 

points. At a general level, it is important to check whether our main result - the positive impact of 

participation in government consortia on R&D productivity – comes from the characteristics of the 

robot technology or industry.  The positive impact of government coordination on private R&D may 

result from the nature of robot technology - which requires a high level of collaboration as an 

assembling technology - as well as the current state of the industry, which is characterized by a high 

degree of uncertainty.  At a more specific level, it is necessary to provide more direct tests of whether 

government-led collaboration is complementary to or a substitute for market-led collaboration. In this 

paper, we only conducted an indirect test by comparing these two types of collaboration. The 

significant impact of participation in government consortia may not be enough to justify government 

participation in this field. 
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Figures & tables 
 
 
 
 
 
Figure 1: 21st Century Robot Challenge Program and Action Plan (NICS) －History, 
Linkage and Hierarchy of the Public Policy by METI 
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Figure 2: Four macro-classifications and 20 micro-classifications of RT 

 

Source: JPO (2002) 
Note: The technologies shaded are closely related to the technology of next-generation robots 
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Table (1) The distribution of G1 patents by 12 public projects and 20 micro-technological fields (percentage) 
 

Project No. 

master-
slave type 

mobile 
robots microrobots 

cartesian 
co-

ordinate 
type 

cylinder/polar 
coordinates 

type 

multi-
articulated 

arms 

chambers 
provided 

with 
manipulation 

devices 

gripping 
hands joints/wrists arms safety 

devices

1   0.125              0.125    0.250 

2 0.200    0.400            0.200  0.200   

3 0.154  0.333            0.026  0.026    0.077 

4 0.750          0.125      0.125      

5                       

6 0.048  0.714              0.048      

7   0.667                  0.333 

8 0.029  0.324  0.324      0.029    0.059  0.059      

9 0.125    0.125  0.125    0.125      0.125    0.125 

10   0.571                    

11   0.182                0.091   

12   0.500                    

Non-G1 0.016  0.154  0.014  0.015  0.006  0.053  0.004  0.213  0.053  0.017 0.034 

Total 0.017  0.156  0.014  0.014  0.006  0.052  0.004  0.211  0.053  0.017 0.034 

            

Project No. 

artificial 
intelligence 

control 
of  

mobile 
robots 

positioning 
control 

program 
control 

hand grip 
control 
means 

control stands teaching 
system 

image 
processing 

sound 
recognition Total

 

1   0.125  0.125          0.125  0.125  1  

2                   1  

3   0.103    0.051  0.077  0.026    0.128    1  

4                   1  

5   1               1  

6 0.048        0.048    0.048  0.048    1  

7                   1  

8   0.059  0.059          0.059    1  

9             0.125  0.125    1  

10               0.143  0.286  1  

11 0.364              0.273  0.091  1  

12   0.500                1  

Non-G1 0.019  0.055  0.078  0.032  0.008  0.009  0.063  0.131  0.028  1  

Total 0.019  0.055  0.078  0.032  0.008  0.009  0.062  0.131  0.028  1  

Note: For the definition of the 12 public projects, see Appendix 1.   
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Table (2): Basic Characteristics of G Firms & Non-G Firms 
 

Firm Types   Total Average 
per firm 

  Trend of patents     
G Firms  Total RT patents 5488 152.444  
(36 firms) G1 patents 94 2.611  
  G patents (G1 or G2 patents) 1281 35.583  
  Collaborative patents (exc.G1 patents) 528 14.667  
  Collaborative patents (exc.G patents) 419 11.639  
  % of collaborative patents (exc.G patents) 7.635  - 
        
  Trend of Participation in Projects     
  Frequency_n (Numbers of projects) 327 9.083  
  Frequency_y (Years of projects) 1632 45.333  
        
  Trend of patents     
Non-G Firms  Total RT patents 8223 29.368  
(280 firms) Collaborative patents 1186 4.236  
  % of collaborative patents 14.423 - 
        

Note: for the definition of G1 patents and G2 patents, refer to Section 2.2 and Appendix 2. 
 
 
Table (3): R&D Productivity in terms of Quality of Patents -Comparison 
between G Firms & Non-G Firms 
 

Firm Types   Total Average SE 

G Firms  Total RT patents 5488     
(36 firms)         
  Quality per patent       
  Claims 5.599  5.803*** 0.221  
  Forward Citations 0.509  0.511  0.041  
  Backward Citations 1.199  1.217  1.199  
  The number of Inventors 2.473  2.478*** 0.080  
  The number of Technological Fields 1.397  1.353*** 0.017  
          

Non-G Firms  Total RT patents 8223 8223 8223 
(280 firms)         
 Quality per patent       
 Claims 5.411  4.636  0.085  
 Forward Citations 0.450  0.480  0.029  
 Backward Citations 1.137  1.122  0.043  
 The number of Inventors 2.163  2.177  0.029  
  The number of Technological Fields 1.315  1.246  0.009  
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Table (4) : Estimation of Research Productivity Function 

 

  
Dependent variable:  
N (number of claims) 

Variable Fixed Effects Random Effects 
R   0.0102***   0.0106*** 
  (0.0003) (0.0003) 
C    0.1547***   0.1860*** 
  (0.0368) (0.0335) 
Sc 0.0483 0.0824 
  (0.0482) (0.0451) 
constant 0.0802 0.0647 
  (0.0801) (0.0797) 
Year Dummies yes yes 
      

Number of samples 2324 2329 
Number of groups 311 316 
Log likelihood -6998.2243 -8760.8442 
Hausman Specification 
test 

chi2(16) =  
75.37 Prob>chi2  =  0.0000

Note 1: *,**, ***: respectively significant at the 10%, 5%, and 
1% levels 
Note 2: Standard errors in parentheses 
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Table (5) : Fixed Effects IV Estimation  

 

  
C N (number of 

claims) 
  1 2 

coefficients       coefficients       

   standard errors  standard errors 

C  22.5252*** 
   (8.2094) 

R 0.001*** 3.7101*** 
  (0.0003) (0.0665) 

CP 0.0019   
  (0.002)   

Sc 0.0378**   
  (0.019)   

C (lag3) 0.3826***   
  (0.0436)   

C (lag4) 0.2198***   
  (0.0553)   

C (lag5) 0.2118***   
  (0.0367)   

constant 0.0300* -12.4379*** 
  (0.0159) (4.0488) 

year dummies yes yes 
      

Number of samples 1450 1450 

Number of groups 301 301 

R. sq    

Within 0.4242 0.7428 

Between 0.9147 0.7378 

Overall 0.8614 0.7452 
 
Note 1: *,**, ***: respectively significant at the 10%, 5%, and 
1% levels 
Note 2: Standard errors in parentheses 

Note 3: Model 1 is the first-stage within regression. In Model 2, 
the instrumented variable is C and instrument variables are 
inventors, CP, Sc, C(lag3), C(lag4), C(lag5) and year dummy 
variables 
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Table (6) : Estimation of Spillovers Model  

 

  Dependent variable:  
N (number of claims) 

Variable Names Fixed Effects Random Effects 
R    0.0101***    0.0105*** 
  (0.0003)  (0.0003)  
K    0.0007***    0.0008*** 
  (0.0002)  (0.0003) 
K*C    0.0002***    0.0003*** 
   (0.0001)  (0.00006) 
Sc 0.0523  0.0821  
  (0.0479) (0.0448) 
Constant -0.1945*  -0.2279** 
  (0.117) (0.1069) 
Year dummies yes yes 

Number of samples 2324 2329 
Number of groups 311  316  
Log likelihood -6995.5744 -8755.0481 

Hausman Specification test chi2(17)  = 80.63 Prob>chi2  =  0.0000
 

Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
Note 2: Standard errors in parentheses 
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Table (7): Estimation of Structural Change    
  Fixed effects negative binomial regression
  Dependent variable: Number of claims

  (1) (2) (3) (4) (5) (6) (7) (8) 
0.0089*** 0.0089*** 0.0089*** 0.0089*** 0.0089*** 0.0089*** 0.0089*** 0.0090***

R 
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

0.0007** 0.0007** 0.0007** 0.0007** 0.0007** 0.0007** 0.0008*** 0.0008***
K 

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

0.0986* 0.3028 0.1271 0.0616 0.0891 0.0028 -0.0006 -0.0239
C 

(0.0444) (0.1902) (0.1283) (0.1047) (0.0901) (0.0742) (0.0684) (0.0625)

0.0198*** 0.0201*** 0.0198*** 0.0198*** 0.0198*** 0.0189*** 0.0186*** 0.0199***
KCG 

(0.0036) (0.0036) (0.0036) (0.0036) (0.0036) (0.0037) (0.0037) (0.0036)

0.0197** 0.0198** 0.0197** 0.0198** 0.0198** 0.0221** 0.0222*** 0.0221***
KCP 

(0.0067) (0.0067) (0.0067) (0.0067) (0.0067) (0.0067) (0.0067) (0.0066)

0.0613 0.0625 0.0613 0.0611 0.0611 0.0584 0.059 0.0558
Sc 

(0.0476) (0.0476) (0.0476) (0.0476) (0.0476) (0.0477) (0.0476) (0.0477)

 -0.2055       
C×from92 

 (0.1867)       

  -0.0287      
C×from93 

  (0.1215)      

   0.0373     
C×from94 

   (0.0954)     

    0.0095    
C×from95 

    (0.0784)    

     0.1072   
C×from96 

     (0.0655)   

      0.1192*  
C×from97 

      (0.0611)  

       0.1605***
C×from98 

       (0.056)

-0.1796 -0.2155 -0.1834 -0.1762 -0.1791 -0.1864 -0.191 -0.1955
constant 

(0.1162) (0.1217) (0.1173) (0.1166) (0.1163) (0.1163) (0.1164) (0.1163)

Year dummies yes yes yes yes yes yes yes yes 

Number of samples 2324 2324 2324 2324 2324 2324 2324 2324 

Number of groups 311 311 311 311 311 311 311 311 

Log likelihood -6982.7713 -6982.2068 -6982.7436 -6982.6941-6982.7639-6981.3925-6980.8151-6978.5485

       
Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
Note 2: Standard errors in parentheses 
Note 3: C×from99～from04 are also positively significant at the 1% level. We omit those results to save space.
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Table (8): Comparison between the impact of market-coordinated collaboration 
and government-led collaboration. Fixed Effects Negative Binomial Regression  

 
  Dependent variable: N (number of claims) 
  X1 X2 X3 X4 

R   0.0101***   0.0094***   0.0101***   0.0097*** 
  (0.0004) (0.0004) (0.0004) (0.0004) 
K   0.0008***   0.0008***   0.0008***   0.0007*** 
  (0.0002) (0.0002) (0.0002) (0.0002) 
PCG   0.0449***      
  (0.0205)      
PCP -0.0004       
  (0.0035)      
KCG   0.1062***    
   (0.0211)    
KCP  0.0171*    
   (0.0066)    
K*PCG      0.00008***   
     (0.00003)   
K*PCP    0.0000    
     (0.0000)   
K*KCG       0.0002 *** 
      (0.00005) 
K*KCP     0.0000  
      (0.00001) 
Sc 0.0575  0.0620  0.0590  0.0637  
  (0.0478) (0.0480) (0.0478) (0.0477) 
Constant  -0.2415**  -0.2082*  -0.2465** -0.2054* 
  (0.1163) (0.1163) (0.1172) (0.1171) 

Year dummies Yes Yes Yes Yes 
Number of samples 2324 2324 2324 2324 
Number of groups 311  311  311  311  
Log likelihood -6992.978 -6988.2725 -6996.9958 -6991.4481 
Hausman specification 
test 

chi2(18)=89.77 
(prob>chi2=0.00)

chi2(18)=56.71 
(prob>chi2=0.01)

chi2(16)= 98.63 
(prob>chi2=0.00)

chi2(17)=57.99 
(prob>chi2=0.00) 

 
Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
Note 2: Standard errors in parentheses 
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Table (9): Comparison between the impact of market-coordinated collaboration and 
government-led collaboration. Summary of estimation results (Whole Sample) 
 
  Model 1 Model 2 Model 3 Model 4 

  

Test if past 
participation 
affects R&D 
productivity 

Test if present 
participation 
affects R&D 
productivity 

Test if past 
participation 
affects R&D 
productivity 
through spillover 
effects 

Test if present 
participation affects 
R&D productivity 
through spillover 
effects 

Government 
Collaboration Significant (1%) Significant (1%) Significant (1%) Significant (1%) 

 Elasticity 0.44 0.45 7.62 0.44 
Market 
Collaboration Insignificant Significant (10%) Insignificant Insignificant 

 Elasticity   1.19     
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Appendix 1: List of the 12 government projects related to the robot industry studied in this paper 
 
 

Name of the program Period Participants (firms) Budget 
(million 

yen) 

Number of 
patents (G1)

Targeted 
technologies 

1) R&D on Micromachine 
Technology  

1991－
2000 

Around 30 firms (the participants 
changed over time), including 
Mitsubishi Electric, Yaskawa, 
Fanuc, Toshiba, Hitachi 

25,000 26 (34) Mobile Robots, 
Microrobots 

2) Mobile Meal Delivery 
Robot for Aged and Disabled 
People 

1994 － 
1998 

2 (Yaskawa & Fujitsu) 563.4 4 (8) Mobile Robots, 
Safety Devices, 
Positioning Control, 
Image Processing, 
Sound Recognition 

3) Surgery Support System 
for Brain Tumors 

1995 － 
1999 

3 (Hitachi, Toshiba, NHK 
Engineering Services) 

931.9 4 (5) Microrobots 

4) Humanoid Robot Project 1998 － 
2002 

12 (including ALSOK, Hitachi, 
Kawasaki Heavy Industries, 
Yaskawa Electric, Kawada 
Industries, Honda, Fanuc) in 
collaboration with universities and 
AIST 

4,573 23 (39) Master-slave types, 
Mobile Robots, 
Control of Mobile 
Robots, Image 
Processing 

5) Advanced support system 
for endoscopic and other 
minimally invasive surgery  

2000 － 
2004 

2 (Toshiba & Asahi Optical) About 
850 

7 (8) Master-slave type 

6) Development of a Software 
Infrastructure for Robot 
Systems (RT Middleware 
Project) 

2002 － 
2004 

1 (Matsushita Electric Works) in 
collaboration with AIST and 
JARA 

267 1 (1) Control of Mobile 
Robots 
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7) Key Technology Research 
and Development for 
Humanoid Robots Operating 
in Actual Environments 

2002 － 
2007 

2 (Kawada Industries, Kawasaki 
Heavy Industries) in collaboration 
with AIST 

No data 16 (21) Mobile robots 

8) Project for the Practical 
Application of Next-
Generation Robots 

2004 － 
2005 

Around 40 (including Matsushita 
Electric Works, Mitsubishi Heavy 
Industry, ALSOK, Tmsuk, NEC) 
in collaboration with many 
universities 

About 
4,000 

2 (3) Mobile Robots, 
Safety Devices 

9) R&D on Medical Welfare 
Machinery Technology  

1999 － 
2003 

6 (including Hitachi, Yaskawa 
Electric, Daihen Tec, Sanyo 
Electric) 

No data 6 (8) No Targeted 
Technologies 

10) Epigenetic Interface for 
Appropriating Social 
Communication Skills 

2002 － 
2004 

1 (ATR) in collaboration with 
universities 

No data 4 (7) Mobile Robots 

11) R&D on Human 
Information Communication 

2002 － 
2006 

1 (ATR) in collaboration with 
universities 

No data 7 (11) Mobile Robots, 
Artificial 
Intelligence, Image 
Processing 

12) R&D on Network Human 
Interface (Network Robots) 

2004 － 
2008 

5 (ATR, Toshiba, NTT, Mitsubishi 
Heavy Industries, Matsushita 
Electric Industries) 

No data 1 (2) Mobile Robots, 
Control of Mobile 
Robots 

Source: Compilation of public reports  by the authors 
Note 1: Programs 1 to 9 are organized by NEDO (METI); programs 10 to 12 are organized by NICT (MIC) 
Note 2: In the column “number of patents,”, the first figure is the absolute number of G1 patents, while the figure in parenthesis is the number calculated by firms: a 
collaborative patent is therefore counted as many times as there are different partners. 
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Appendix 2: Definition of G2 patents and notion of targeted technology 

In Section 2.2, we distinguish between two types of G patents, public project related patents, 

G1 and G2. G1 are patents to which the official reports refer. G2 are government patents defined in a 

broader sense.  

We basically follow Branstetter & Sakakibara (2002) to identify this second category, but 

there are two differences. First, in Branstetter and Sakakibara (2002), the public project related patents 

are defined as the number of patent applications by participating firms in the targeted technologies 

during the period that the firm participate in consortia.  Yet we include the number of patent 

applications by participating firms in the targeted technologies during and after the period of 

participation. To put it differently, according to this definition, once a firm participates in a 

government program, all the patents it applies for in the targeted technologies after the participating 

year are considered to be G2 patents. Second, to classify the G2 patents, Branstetter & Sakakibara 

(2002) use the targeted technologies that are depicted in the official report, yet we use more 

quantitative criterion, utilizing the information of the technological fields of patents reported by the 

JPO (2002). We first identified the technological fields of the 94 G1 patents (Table 1). Then, we count 

the number of patents for each technological field. For each project, the technological fields that have 

the largest number of patents are defined as the target technologies of the project.  

According to this criterion, the targeted technologies for the “Humanoid robot project” are 

“master slave type,” “mobile robots,” “control of mobile robots,” and “image processing” 

(respectively 15%, 33%, 10%, and 13% of the 39 patents that issued from this project). With this 

criterion, the number of targeted technologies varies from 5 (for the “Mobile Meal Delivery Robot for 

Aged and Disabled People”) to 0 (“R&D on Medical Welfare Machinery Technology”). The official 

target of this program is not RT and the technological fields of the 8 patents that came out of this 

project are extended to 8 fields; thus, we conclude that there is no target technology in this project. The 

case for the “Mobile Meal Delivery Robot for Aged and Disabled People” is ambiguous, where the 8 

patents are distributed to 7 technological fields. Thus, we use the number of claims of these patents, 

instead of the number of patents, to determine the targeted technologies.  

From this, it can be seen that “mobile robots” appears most frequently as the targeted 

technological field in the government programs (11 times among 12 programs) while 11 technological 

fields are not defined as targeted technologies in any of the projects. Generally speaking—and this 

comes as no surprise—the targeted technologies tend to be the technologies that are closely related to 

next-generation robots (Figure 2). There is only one exception, “artificial intelligence,” which has not 

been the focus of the commissioned-type of government program. Again, this is not surprising, 

because this is the domain where universities are actively involved (as seen in Lechevalier, Ikeda, and 

Nishimura, 2006) and the R&D in this technology is supported through subsidies from MEXT. 
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Appendix 3: Derivation of Spillover Pool 

Firms are usually engaged in research activities in various fields. Jaffe [1986] expresses the 

technological position of a firm in vectors which are composed of the portion of its R&D effort in each 

technological field: 

Fi=(f1・ ・ ・ fk) 

where each element of the technological position vector represents the ratio of R&D resources used by 

firm i in each technological field.  One way to calculate the technological position of the firm is by 

using the distribution of R&D spending in each field, yet it is quite difficult to obtain the portion of 

R&D spending across technological fields. Thus, we follow Jaffe [1986] and use the distribution of 

patents that a firm applies for in each technological field.  To calculate the technological position of 

firms we classify RT patents into twenty micro-technological fields based on the classification of the 

JPO (2002). 

 Further, Jaffe [1986] defines the “technological distance” between firms i and j using their 

vectors of technological position, which takes the form of: 
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Here, technological distance Tij is an index to measure the magnitude of similarity in the patent 

portfolio between the firms and it approaches 1 as the similarity of the technological position increases. 

Following Jaffe [1986], we assume that the technological position and technological proximity are 

fixed in the short run. 

We can then calculate the potential spillover pool of each firm using the index of 

technological distance. The idea behind this is that spillover effects for firm i will be bigger as its 

technological position become more similar to that of firm j.  The spillover pool for the firm i in time t 

is formularized as: 

∑
≠

=
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Appendix 4: complementary tables 

 
 
Table A1 : Estimation of Research Productivity 
Function (Standard errors in parentheses ) 

 

  Dependent variable:    
N (number of claims) 

Variables Fixed Effects Random Effects

R      0.0101***      0.0105*** 
  (0.0003) (0.00032) 
C      0.0196***      0.0250*** 
  (0.0066)  (0.0061)  
Sc 0.0535  0.0877  
  (0.0482) (0.0451) 
Constant 0.0713  0.0553  
  (0.0801) (0.0797) 
Year dummies yes yes 
      
Number of samples 2324 2329 
Number of groups 311  316  
Log likelihood -7001.3634 -8767.8197 
Hausman Specification 
test 

 chi2(16)  = 
152.23 

Prob>chi2 = 
0.0000 

 
  Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
  Note 2: Standard errors in parentheses 
Note3: As in Table 4, this table gives the result of the estimation of equation (12) but with an 
alternative specification regarding the variable C. Instead of using the accumulated number of 
consortia in which a firm i has been involved, we consider the accumulated years of participation in 
the consortia. 
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Table A2 : Estimation of Research Productivity Function 
using the data of participating firms only - Fixed Effects  

 

Dependent variable: N (number of claims) 
R      0.0125*** 
  (0.0006) 
C 0.1541*** 
  (0.0460) 
Sc 0.0705  
  (0.1216) 
Constant 0.0842  
  (0.1594) 
Year dummies yes 
    
Number of samples 393 
Number of groups 36  
Log likelihood -1544.5051 

Hausman Specification test chi2(16) =  122.38 Prob>chi2  =  
0.0000 

 
  Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
  Note 2: Standard errors in parentheses 
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Table A3 : Estimation of Spillovers Model  

 

  Dependent variable:      
N (number of claims) 

Variable Names Fixed Effects Random Effects 
R    0.0101***    0.0105*** 
  (0.0003)  (0.0003)  
K    0.0008***    0.0008*** 
  (0.0002)  (0.0002)  
CY   0.00003**     0.00004*** 
  (0.00001) (0.00001) 
Sc 0.0550  0.0852  
  (0.00001)  (0.0448) 
Constant  -0.2179**   -0.2540** 
  (0.1162)  (0.1065)  
Year dummies yes yes 
     
Number of samples 2324 2329 
Number of groups 311  316  
Log likelihood -6996.4237 -8757.1316 
Hausman Specification test   chi2(16) =76.05 Prob>chi2 = 0.0000

 
  Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
  Note 2: Standard errors in parentheses 
Note 3: As in Table 6, this table reports the results of the estimation of equation (14) but here we use the 
accumulated years of participation in consortia for the variable C, instead of the accumulated number of 
consortia. 
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Table A4 : Estimation of Spillovers Model using the data 
of participating firms only - Fixed Effects 

 

Dependent variable: N (number of claims) 
R   0.0123*** 
  (0.0007)  
K    0.00036*** 
  (0.0005)  
C   0.0002*** 
  (0.00008) 
Sc 0.0484  
  (0.1222) 
Constant -0.0568 
  (0.2710) 
Year dummies yes 
    
Number of samples 393 

Number of groups 
36 

Log likelihood -1545.9585 

Hausman Specification test chi2(17)  = 80.63 
 
  Note 1: *,**, ***: respectively significant at the 10%, 5%, and 1% levels 
  Note 2: Standard errors in parentheses 

 
 
 
 
Table A5: Comparison between the impact of market-coordinated collaboration and 
government-led collaboration. Summary of estimation results (estimations with only the 
participants in government programs) 
  Model 1 Model 2 Model 3 Model 4 

  

Test if past 
participation 
affects R&D 
productivity 

Test if current 
participation affects 
R&D productivity 

Test if past 
participation 
affects R&D 
productivity 
through 
spillover effects 

Test if current 
participation affects 
R&D productivity 
through spillover 
effects 

Government 
Collaboration Insignificant Significant (1%) Insignificant Significant (1%) 

Market 
Collaboration Insignificant Insignificant Insignificant Insignificant 

 


