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Abstract

This paper studies compact and comprehensive bargaining prob-
lems for n players and axiomatically characterize the extensions of the
three classical bargaining solutions to nonconvex bargaining problems:
the Nash solution, the egalitarian solution and the Kalai-Smorodinsky
solution. Our characterizing axioms are various extensions of Nash’s
original axioms.
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1 Introduction

This paper considers nonconvex bargaining problems for n players. Specifi-
cally, we study (normalized) bargaining problems that are compact and com-
prehensive, but are not necessarily convex. Nonconvex bargaining problems
can arise in many economic contexts when, for example, individuals are non-
expected utility maximizers. They also arise naturally in bargaining prob-
lems when individuals are not characterized by their utilities but by their
capability sets à la Sen (1985) (see Xu and Yoshihara (2004) for such cases).
The literature has some discussions on nonconvex bargaining problems.

For example, there exists a number of characterizations of the Nash bargain-
ing solution for the class of compact and comprehensive bargaining problems.
However, in all the characterization results, either a type of continuity prop-
erty is imposed (see, for example, Kaneko (1980), Herrero (1989), Conley and
Wilkie (1996)), or the class of bargaining problems contains finite bargaining
problems in addition to those that are compact and comprehensive (see, for
example, Mariotti (1999)). The purpose of this paper is two-fold. First, we
give a new characterization of the Nash bargaining solution for the class of
compact and comprehensive bargaining problems by four axioms: Efficiency,
Symmetry, Scale Invariance and Contraction Independence, and provide a
simple proof that highlights the crucial role that Contraction Independence
plays. Because of our proof method, it is interesting to note that we do
not use any continuity type axiom in our characterization. The four axioms
used in the characterization result of the Nash solution are natural exten-
sions of Nash’s original four axioms (Nash (1950)) in our context. Viewed
in this way, this characterization result reported in the paper is perhaps
closer to Nash’s original program than those already existing in the litera-
ture. Secondly, we use variants of the four axioms used for characterizing
the Nash solution to characterize the egalitarian solution (Kalai (1977)) and
the Kalai-Smorodinsky solution (Kalai and Smorodinsky (1975)) for noncon-
vex bargaining problems. Our characterization results of the egalitarian and
the Kalai-Smorodinsky solutions again highlights the crucial role that Con-
traction Independence or Weak Contraction Independence (see Section 3 for
the formal definition) plays. It should be noted that our characterizations
of the egalitarian as well as the Kalai-Smorodinsky solutions do not use the
commonly used Monotonicity type axioms for characterizations of those two
solutions.
The remainder of the paper is organized as follows. In Section 2, we lay
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down some basic notation and definitions. Section 3 presents our axioms and
their discussions. The main results and their proofs are contained in Section
4. We conclude the paper with a few remarks in Section 5 comparing and
contrasting the axioms used in characterizing the three solutions.

2 Notation and Definitions

R+ is the set of all non-negative real numbers and R++ is the set of all
positive numbers. Rn

+ (resp. R
n
++) is the n-fold Cartesian product of R+

(resp. R++). For any x, y ∈ Rn
+, we write x > y to mean [xi ≥ yi for all

i ∈ N and x 6 =y], and x À y to mean [xi > yi for all i ∈ N ]. For any
x ∈ Rn

+ and any non-negative number α, we write z = (α;x−i) ∈ Rn
+ to

mean that zi = α and zj = xj for all j ∈ N \{i}. A subset A ⊆ Rn
+ is said to

be non-trivial if there exists a ∈ A such that aÀ 0. Let Σ be the set of all
non-trivial, compact and comprehensive subsets of Rn

+. Elements in Σ are
interpreted as (normalized) bargaining problems. A bargaining solution F
assigns a nonempty subset F (A) of A for every bargaining problem A ∈ Σ.
Let π be a permutation of N . The set of all permutations of N is denoted

by Π. For all x = (xi)i∈N ∈ Rn
+, let π(x) = (xπ(i))i∈N . For all A ∈ Σ and

any permutation π ∈ Π, let π(A) = {π(a) : a ∈ A}. For any A ∈ Σ, we say
that A is symmetric if A = π(A) for all π ∈ Π.
For all A ∈ Σ and all i ∈ N , let mi(A) = max{ai : (a1, · · · , ai, · · · , an) ∈

A}. Therefore, m(A) ≡ (mi(A))i∈N is the ideal point of A. For all A ⊆ Rn
+,

define the comprehensive hull of A, to be denoted by compA, as follows:

compA ≡
©
z ∈ Rn

+ : z ≤ x for some x ∈ A
ª
.

Definition 1: A bargaining solution F over Σ is the Nash solution if for all
A ∈ Σ, F (A) = {a ∈ A :

Q
i∈N ai ≥

Q
i∈N xi for all x ∈ A}.

Definition 2: A bargaining solution F over Σ is the egalitarian solution if
for all A ∈ Σ, F (A) = {a ∈ A : ai = aj for all i, j ∈ N and there is no x ∈ A
such that x >> a}.

Definition 3: A bargaining solution F over Σ is the Kalai-Smorodinsky
solution if for all A ∈ Σ, F (A) = {a ∈ A : mi(A)/ai = mj(A)/aj for all
i, j ∈ N and there is no x ∈ A such that x >> a}.
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Our notion of the Nash solution for nonconvex bargaining problems is
identical to the one proposed by Kaneko (1980).1 It should be noted that,
given that Σ contains all non-trivial, compact and comprehensive bargaining
problems, for any A ∈ Σ, the Nash solution F (A) can contain more than one
alternative, while both the egalitarian and the Kalai-Smorodinsky solutions
are singletons.

3 Axioms

In this section, we present our axioms that are to be used for characteriza-
tion results. We start with two efficiency type axioms which are commonly
invoked in the literature.

Efficiency (E): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such
that x > a.

Weak Efficiency (WE): For any A ∈ Σ and any a ∈ F (A), there is no
x ∈ A such that xÀ a.

The next two axioms are natural generalizations of Nash’s original sym-
metry axiom in our context.

Symmetry (S): For any A ∈ Σ, if A is symmetric, then [a ∈ F (A) ⇒
π(a) ∈ F (A)].

Strong Symmetry (SS): For any A ∈ Σ, if A is symmetric, then [a ∈
F (A)⇒ ai = aπ(i) for all i ∈ N ].

Symmetry is a natural generalization of Nash’s original symmetry axiom
to nonconvex problems and is also discussed in Mariotti (1999). Strong
Symmetry is a stronger requirement than Symmetry. It should be noted that,
when restricted to convex bargaining problems, and bargaining solutions are

1Mariotti (1999) also discusses axiomatic characterization of the Kaneko type of the
Nash solution for nonconvex problems, although his domain is larger than ours in the
sense that it includes “finite bargaining problems.” In contrast, Herrero’s proposal (Herrero
(1989)) for the Nash extension solution constitutes a superset of the set of the Kaneko type
solution outcomes on each nonconvex problem, and Conley and Wilkie (1996) proposes an
extension of the Nash solution which is a single-valued mapping in that domain.
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required to be single-valued mappings, the two symmetry axioms coincide
with and are identical to Nash’s original Symmetry axiom.
The next axiom is the familiar scale invariance property commonly used

in both convex (see, for example, Nash (1950)) and nonconvex bargaining
problems (see, for example, Conley and Wilkie (1996), Herrero (1989), Mar-
iotti (1999).

Scale Invariance (SI): For all A ∈ Σ and all α ∈ Rn
++, if αA = {(αiai)i∈N :

a ∈ A} then F (αA) = {(αiai)i∈N : a ∈ F (A)}.

The final two axioms are extensions of Nash’s original Independence of
Irrelevant Alternatives.

Contraction Independence (CI): For any A,B ∈ Σ, if B ⊆ A and B ∩
F (A) 6 =∅, then F (B) = B ∩ F (A).

Weak Contraction Independence (WCI): For any A,B ∈ Σ, if m(A) =
m(B), B ⊆ A and B ∩ F (A) 6 =∅, then F (B) = B ∩ F (A).

Contraction Independence has been widely used in the literature of non-
convex bargaining problems. Weak Contraction Independence is new and
is weaker than Contraction Independence: it restricts contractions to those
problems that have the same ideal point.

4 Extensions of the classical bargaining solu-

tions and their characterizations

In this section, we provide axiomatic characterizations of the Nash solution,
the egalitarian solution and the Kalai-Smorodinsky solution.

Theorem 1: A bargaining solution F over Σ is the Nash solution if and
only if it satisfies Efficiency, Symmetry, Scale Invariance and Contraction
Independence.

Proof. It can be checked that if F is the Nash solution over Σ then it
satisfies the four axioms in Theorem 1. Thus, we need only to show that if a
bargaining solution F over Σ satisfies Efficiency, Symmetry, Scale Invariance
and Contraction Independence, then it must be the Nash solution.
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Let F over Σ satisfy the above four axioms. Given any bargaining problem
A ∈ Σ, we first show that

Claim 1: for any x and a which are both efficient in A, and if
x ∈ A is such that

Q
i∈N xi <

Q
i∈N ai, then x 6 ∈F (A).

Let a, x ∈ A be such that they are efficient in A and that
Q
i∈N xi <Q

i∈N ai. Suppose to the contrary that

x ∈ F (A).

Consider the bargaining problem B = comp{x, a}. From the construction,
B ⊆ A. By Contraction Independence,

x ∈ F (B).

Let z ∈ Rn
+ be (z1;x−1) ∈ Rn

+ where z1 is such that z1
Qn
i=2 xi =

Q
i∈N ai.

Since
Q
i∈N xi <

Q
i∈N ai, we must have z1 > x1. Consider the bargaining

problem C ∈ Σ, which is defined as:

C = comp {a, z}.

Clearly, B ⊆ C. By choosing α ∈ Rn
++ appropriately, given that z1

Qn
i=2 xi =Q

i∈N ai, we can have (αizi)i∈N = π0((αiai)i∈N) and (αiai)i∈N = π0((αizi)i∈N)
for some permutation π0 ∈ Π. Let D = {y ∈ Rn

+ : y = (αibi)i∈N for all
b ∈ C}. Note that a and z are the two and only two efficient points in C. It
then follows that (αiai)i∈N and (αizi)i∈N are the two and only two efficient
points in D. Construct the following bargaining problem G ∈ Σ:

G ≡ ∪π∈Ππ(D).

Clearly, G is symmetric. By Symmetry and Efficiency, it must be true that

{(αiai)i∈N , (αizi)i∈N} ⊆ F (G).

Contraction Independence now implies that

{(αiai)i∈N , (αizi)i∈N} = F (D).

By Scale Invariance,
{a, z} = F (C).
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Noting that B ⊆ C, by Contraction Independence, it follows that

{a} = F (B)

a contradiction. Therefore, x 6 ∈F (A). Claim 1 is thus proved. Therefore,
we must have the following:

for any A ∈ Σ, F (A) ⊆ {a ∈ A :
Y
i∈N

ai ≥
Y
i∈N

xi ∀x ∈ A}.

It remains to show that for any A ∈ Σ, for all z ∈ {a ∈ A :
Q
i∈N ai ≥Q

i∈N xi ∀x ∈ A}, it must be true that z ∈ F (A). Given that F (A) is not
empty, from the above, let a ∈ F (A). Then, a must be such that

Q
i∈N ai ≥Q

i∈N xi for all x ∈ A. Suppose there exists y ∈ A such that
Q
i∈N yi =Q

i∈N ai and yet y 6 ∈F (A). Consider the following bargaining problem:
X ≡ comp{a, y}. Note that X ⊆ A. Since a ∈ F (A) and y 6 ∈F (A),
by Contraction Independence, we must have a ∈ F (X) and y 6 ∈F (X).
By appropriately choosing α ∈ Rn

++, given that
Q
i∈N yi =

Q
i∈N ai, we

can have π0((αiai)i∈N) = (αiyi)i∈N and π0((αiyi)i∈N) = (αiai)i∈N for some
permutation π0 over N . Consider X 0 ≡ {(αixi)i∈N : (xi)i∈N ∈ X}. By Scale
Invariance,

(αiai)i∈N ∈ F (X 0) and (αiyi)i∈N 6 ∈F (X 0).

Now, construct the bargaining problem Z ≡ ∪π∈Ππ(X 0). Clearly, Z is sym-
metric and X 0 ⊆ Z. By Symmetry and Efficiency, it must be true that

{(αiai)i∈N , (αiyi)i∈N} ⊆ F (Z).

Noting that X 0 ⊆ Z, by Contraction Independence, it follows that

{(αiai)i∈N , (αiyi)i∈N} = F (X 0).

Scale Invariance now implies that

{a, y} = F (X),

a contradiction. Therefore, y ∈ F (A). That is, we have shown that

for any A ∈ Σ, {a ∈ A :
Y
i∈N
ai ≥

Y
i∈N
xi ∀x ∈ A} ⊆ F (A).
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Therefore,

for any A ∈ Σ, F (A) = {a ∈ A :
Y
i∈N

ai ≥
Y
i∈N

xi ∀x ∈ A}.

¦

Theorem 2: A bargaining solution F over Σ is the egalitarian solution if
and only if it satisfies Weak Efficiency, Strong Symmetry and Contraction
Independence.

Proof. It can be checked that if F is the egalitarian solution over Σ then it
satisfies the four axioms in Theorem 2. Thus, we need only to show that if
a bargaining solution F over Σ satisfies Weak Efficiency, Strong Symmetry
and Contraction Independence, then it must be the egalitarian solution.
Let F over Σ satisfy the above three axioms. Given any bargaining prob-

lem A ∈ Σ, we first show that

Claim 2: for any x and a which are weakly efficient in A, and if
x, a ∈ A is such that [xi 6 =xj for some i, j ∈ N ], and [ai = aj for
all i, j ∈ N ], then x 6 ∈F (A).

Let a, x ∈ A be such that they are weakly efficient and that [xi 6 =xj for
some i, j ∈ N ], and [ai = aj for all i, j ∈ N ]. Suppose to the contrary that

x ∈ F (A).

Consider the bargaining problem

B = comp{a, x}.

Note that B ⊆ A. By Contraction Independence,

x ∈ F (B).

Consider the bargaining problem C ∈ Σ, which is defined below:

C = ∪π∈Ππ(B).

By construction, C is symmetric, a ∈ C, a is weakly efficient in C, and
B ⊆ C. By Strong Symmetry and Weak Efficiency, it then follows that
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F (C) = {a}. Noting that B ⊆ C, by Contraction Independence, it follows
that

F (B) = {a}
a contraction with x ∈ F (B). Therefore, x 6 ∈F (A). Then, by Weak Effi-
ciency, it must be true that

F (A) = {a ∈ A : ai = aj ∀i ∈ N and there exists no x ∈ A such that x >> a}.

¦

Theorem 3: A bargaining solution F over Σ is the Kalai-Smorodinsky
solution if and only if it satisfies Weak Efficiency, Strong Symmetry, Scale
Invariance and Weak Contraction Independence.

Proof. It can be checked that if F is the Kalai-Smorodinsky solution over
Σ then it satisfies the four axioms in Theorem 3. Thus, we need only to
show that if a bargaining solution F over Σ satisfies Weak Efficiency, Strong
Symmetry, Scale Invariance and Weak Contraction Independence, then it
must be the Kalai-Smorodinsky solution.
Let F over Σ satisfy the above four axioms. Given any bargaining problem

A ∈ Σ, by Scale Invariance, without loss of generality, we take that [mi(A) =
mj(A) for all i, j ∈ N ]. We need to show that if a is weakly efficient in A
and [ai = aj for all i, j ∈ N ], then F (A) = {a}.
Let a ∈ A be such that it is weakly efficient and that [ai = aj for all

i, j ∈ N ]. Consider the bargaining problem

B ≡ comp{a, (m1(A); a−1), · · · , (mi(A); a−i), · · · , (mn(A); a−n)}.

From the construction, B is symmetric and A ⊆ B. By Weak Efficiency
and Strong Symmetry, we must have F (B) = {a}. Noting that A ⊆ B
and m(A) = m(B), by Weak Contraction Independence, we then obtain
F (A) = {a}. Therefore, Theorem 3 is proved. ¦

To conclude this section, we make the following observations concern-
ing the logical independence of the axioms used in each of the above three
theorems.

Proposition 1: The axioms Efficiency, Symmetry, Scale Invariance and
Contraction Independence are logically independent.

Proof. Consider the following solutions:

9



(1) For all A ∈ Σ, F1(A) = A;

(2) For all A ∈ Σ, F2(A) = {a ∈ A : a21
Qn
i=2 ai ≥ x21

Qn
i=2 xi for all x ∈ A};

(3) For all A ∈ Σ, F3(A) = {a ∈ A :
P

i∈N ai ≥
P

i∈N xi for all x ∈ A};

(4) For all A ∈ Σ, F4(A) = {a ∈ A : a is efficient }.

It can be checked that F1 satisfies Symmetry, Scale Invariance and Con-
traction Independence while violates Efficiency; F2 satisfies Efficiency, Scale
Invariance and Contraction Independence while violates Symmetry; F3 satis-
fies Efficiency, Symmetry and Contraction Independence while violates Scale
Invariance; and F4 satisfies Efficiency, Symmetry and Scale Invariance while
violates Contraction Independence. ¦

Proposition 2: The axioms, Weak Efficiency, Strong Symmetry and Con-
traction Independence are logically independent.

Proof. Consider the following solutions:

(5) For all A ∈ Σ, F5(A) = {a ∈ A : ai = aj for all i, j ∈ N};

(6) For all A ∈ Σ, if A is symmetric then F6(A) is given by the egalitarian
solution; otherwise, F6(A) is given by the Nash solution.

Clearly, F5 satisfies Strong Symmetry and Contraction Independence
while violates Weak Efficiency; the Nash solution satisfies Weak Efficiency
and Contraction Independence while violates Strong Symmetry; and F6 sat-
isfies Weak Efficiency and Strong Symmetry while violates Contraction In-
dependence. ¦

Proposition 3: The axioms Weak Efficiency, Strong Symmetry, Scale In-
variance and Weak Contraction Independence are logically independent.

Proof. Consider the following solutions:

(7) For all A ∈ Σ, F7(A) = {a ∈ A : ai/mi(A) = aj/mj(A) for all i, j ∈ N};

(8) For all A ∈ Σ, if A is such that mi(A) = mj(A) for all i, j ∈ N , then
F8(A) is given by the Kalai-Smorodinsky solution; otherwise, F8(A) is
given by {a ∈ A : a is weakly efficient in A};

10



(9) Let Σ∗ = {A ∈ Σ : mi(A) = mj(A) for all i, j ∈ N}. Define F9
as follows: for all A ∈ Σ∗, if A is symmetric, then F9(A) is given
by the Kalai-Smorodinsky solution, and if A is not symmetric, then
F9(A) = {a ∈ A : a is weakly efficient in A}; for all A ∈ Σ\Σ∗, F9(A) =
{(a∗i /αi)i∈N : a∗ ∈ F (A∗)} where A∗ = αA = {(αiai)i∈N : a ∈ A} for
some α ∈ Rn

++ such that A
∗ ∈ Σ∗.

It can be checked that F7 satisfies Strong Symmetry, Scale Invariance and
Weak Contraction Independence while violates Weak Efficiency; the Nash
solution satisfies Weak Efficiency, Scale Invariance and Contraction Indepen-
dence while violates Strong Symmetry; F8 satisfies Weak Efficiency, Strong
Symmetry and Weak Contraction Independence while violates Scale Invari-
ance; and F9 satisfies Weak Efficiency, Strong Symmetry and Scale Invariance
while violates Weak Contraction Independence. ¦

5 Conclusion

In this paper, we have presented a unified framework to provide axiomatic
characterizations of the extensions of the three classical bargaining solutions
for nonconvex bargaining problems. Our characterizations are simpler than
those existing in the literature. Our axioms are various natural general-
izations of the axioms used in Nash’s original discussion of the bargaining
problems for convex bargaining problems. The following table summarizes
our findings:

Table 1

Axioms\ Solutions NS ES KS

(E) ⊕ × ×
(WE) ° ⊕ ⊕
(S) ⊕ ° °
(SS) × ⊕ ⊕
(SI) ⊕ × ⊕
(CI) ⊕ ⊕ ×
(WCI) ° ° ⊕

where
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NS is for Nash Solution, ES for Egalitarian Solution, and KS for Kalai-
Smorodinsky Solution

⊕ stands for that the axiom is used for the characterization,

° stands for that the axiom is satisfied by the solution,

× stands for that the axiom is violated by the solution.

Clearly, Weak Efficiency, Symmetry and Weak Contraction Independence
are satisfied by all three solutions. It is also clear that the Nash solution sat-
isfies all the axioms but Strong Symmetry, the egalitarian solution satisfies all
the axioms but Efficiency and Scale Invariance, and the Kalai-Smorodinsky
solution satisfies all but Efficiency and Contraction Independence. Note that
Theorem 2 (resp. Theorem 3) constitutes a strengthening of the character-
ization of the egalitarian solution (resp. the Kalai-Smorodinsky solution)
by Conley and Wilkie (1991), since Contraction Independence (resp. Weak
Contraction Independence) is logically implied by the monotonicity axiom
(resp. the weak monotonicity axiom) of Kalai (1977) in the presence of
Weak Efficiency.
It is also interesting to note that the Kalai-Smorodinsky solution has

some constrained contraction property. It implies that once a partition of the
class of bargaining problems is defined, where each equivalence class of this
partition consists of the bargaining problems with the same ideal point, then
the Kalai-Smorodinsky solution is rationalizable within each equivalence class
of the problems. This fact gives us some new insight on the rational choice
property of this solution, which the previous literature does not provide since
it is widely considered that it has no rational choice property.
It is hoped that our characterizations will shed some new lights on the

three solutions for nonconvex bargaining problems.
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