
 

 

 

 

 

Discussion Paper Series A  No.453 
 

 
 

A New Insight into Three Bargaining 
Solutions in Convex Problems 

 

 
 

Yongsheng Xu 
(Department of Economics, Andrew Young School of Policy Studies, 

Georgia State University) 
and 

Naoki Yoshihara 
(The Institute of Economic Research, Hitotsubashi University) 

 

 

 

 

 

 

 

July 2004 
 

 

 

 

 

 

 

 

 

 

The Institute of Economic Research  
Hitotsubashi University         

Kunitachi, Tokyo, 186-8603 Japan   



A New Insight into Three Bargaining
Solutions in Convex Problems

Yongsheng Xu
Department of Economics

Andrew Young School of Policy Studies
Georgia State University
Atlanta, GA 30303, U.S. A.
Email: yxu3@gsu.edu

and
Naoki Yoshihara

Institute of Economic Research
Hitotsubashi University
2-4 Naka, Kunitachi
Tokyo, Japan 186-8603

Email: yosihara@ier.hit-u.ac.jp

April 2004

Abstract

We reconsider the three well-known solutions: the Nash, the egal-
itarian and the Kalai-Smorodinsky solutions, to the classical domains
of convex bargaining problems. A new proof for the Nash solution
that highlights the crucial role the axiom Contraction Independence
plays is provided. We also give new axiomatic characterizations for
both the egalitarian and the Kalai-Smorodinsky solutions. Our results
focus on both contraction and expansion independence properties of
bargaining problems and, as a consequence, some new insights on the
three solutions from the perspective of rational choice may be derived.
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1 Introduction

This paper reconsiders some well-known solutions to convex bargaining prob-
lems. Our purpose is two-fold. First, we provide a new proof for the Nash
solution that highlights the crucial role the axiom Contraction Independence
plays. Our proof method is proof-by-contradiction. Secondly, by employing
similar proof methods as for the Nash solution, we provide new axiomatic
characterizations for both the egalitarian and the Kalai-Smorodinsky solu-
tions. Instead of using any monotonicity type axiom, which is commonly
used in the literature for characterizing these two solutions (see, for exam-
ple, Kalai (1977), Kalai and Smorodinsky (1975); see also Peters (1992) and
Thomson (1994) for excellent surveys), we use variants of Contraction Inde-
pendence and Expansion Independence to characterize the egalitarian and
the Kalai-Smorodinsky solutions. Both Contraction Independence and Ex-
pansion Independence properties figure prominently in the theory of rational
choice. Our new characterizations therefore may shed some new insights into
the three well-known solutions to bargaining problems.
The remainder of the paper is organized as follows. Section 2 provides a

basic framework for the subsequent analysis. Section 3 presents the axioms.
Our main results and their proofs are contained in Section 4. Section 5 makes
several concluding remarks.

2 Basic Model

For any x,y ∈ Rn+, we write x > y as [xi ≥ yi for all i ∈ N and x 6= y] and
xÀ y as [xi > yi for all i ∈ N ].
Let π be a permutation of N . For all x = (xi)i∈N ∈ Rn+, let π (x) =

(xπ(i))i∈N . Π denotes the set of all permutations of N .
Let Σ be the set of all compact, convex, and comprehensive subsets of

Rn+, each of which contains an interior point of Rn+. Elements in Σ are
interpreted as normalized bargaining problems. For all A ∈ Σ and any π ∈ Π,
let π (A) = {π (a) | a ∈ A}. For all A ∈ Σ, A is a symmetric problem if
A = π (A) for all π ∈ Π.
For any x ∈ Rn+ and α ∈ Rn++, let α(x) ≡ (αixi)i∈N . Given A ∈ Σ and

α ∈ Rn++, let α(A) ≡
©
α(x) ∈ Rn+ | x ∈ A

ª
. For any A in Rn+, we define the

comprehensive hull of A by

compA ≡
©
z ∈ Rn+ | ∃x ∈ A : z ≤ x

ª
.
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Let the convex hull of A be denoted by conA. The convex hull of compA
will be called the convex and comprehensive hull of A, and will be denoted
by concompA.
A bargaining problem A ∈ Σ is strictly comprehensive if and only if

its boundary set constitutes the set of efficient utility points on A. Let us
denote the set of strictly comprehensive problems by Σsc. Given x,y ∈ Rn+, x
is lexicographically greater than y if there are permutation π ∈ Π and i ∈ N
such that xπ(i) > yπ(i) and xπ(j) = yπ(j) for any π (j) < π (i).
A bargaining solution F is a single-valued mapping from Σ to Rn+ such

that for every bargaining problem A ∈ Σ, F (A) ∈ A. For given F (A) ∈ A,
let Fi (A) ∈ R+ be its i-th component.

Definition 1: A bargaining solution FNA : Σ→ Rn+ is the Nash solution if
for every A ∈ Σ,

FNA(A) = argmax(ai)i∈N∈A

ÃY
i∈N

ai

!
.

Definition 2: A bargaining solution FK : Σ→ Rn+ is the Kalai-Smorodinsky
solution if for every A ∈ Σ, FK(A) ∈ A implies that: (1) there is no other
a ∈ A such that a À FK(A); and (2) there exists γ ∈ (0, 1) such that
FK(A) = γ ·m (A).

Definition 3: A bargaining solution FE : Σ→ Rn+ is the egalitarian solution
if for every A ∈ Σ, FE(A) ∈ A implies that: (1) there is no other a ∈ A
such that aÀ FE(A); and (2) FEi (A) = F

E
j (A) for all i, j ∈ N .

3 Axioms

We consider the following axioms:

Efficiency: For all A ∈ Σ, there is no x ∈ A such that x > F (A).

Weak Efficiency: For all A ∈ Σ, there is no x ∈ A such that xÀ F (A).

Symmetry: For all A ∈ Σ, if A is symmetric, then Fi (A) = Fj (A) for all
i, j ∈ N .
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Scale Invariance: For all A,B ∈ Σ, and all α ∈ Rn++, if B = α(A), then
F (B) = α(F (A)).

Contraction Independence: For all A,B ∈ Σ, if A ⊇ B and F (A) ∈ B,
then F (B) = F (A).

Weak Contraction Independence: For all A,B ∈ Σ such that m (A) =
m (B), if A ⊇ B and F (A) ∈ B, then F (B) = F (A).

Expansion Independence: For all A,B ∈ Σ, if A ⊆ B and F (A) is
efficient on B, then F (B) = F (A).

Weak Expansion Independence: For all A,B ∈ Σ such that m (A) =
m (B), if A ⊆ B and F (A) is efficient on B, then F (B) = F (A).

The first five axioms are standard ones discussed in the literature on convex
bargaining problems (see, for example, Peters (1992) and Thomson (1994)
for discussions). The last three are new and deserve further discussions.
Weak Contraction Independence is weaker than Contraction Independence.
It restricts its applicability to contraction situations in which the ideal point
remains unchanged. Expansion Independence requires that, when a bargain-
ing problem A is enlarged to another bargaining problem B, if the solution
F (A) to A continues to be efficient on B, then F (A) should continue to be
the solution to the bargaining problem B. The idea is that, even though
there is an enlargement of “opportunities” from A to B, given that F (A) is
both efficient on A and on B, and that F (A) is already the solution to the
original problem A, any movement away from F (A) will hurt at least one
player, and thus the solution to the enlarged problem B should continue to
be F (A). This requirement suggests a solidarity type property embedded in
the solution. This can also be seen as stating a certain inertia of the choice
process. Weak Expansion Independence is weaker than Expansion Indepen-
dence in that it restricts its applicability to situations where the ideal point
remains unchanged.
We note that our Expansion Independence axiom is logically weaker than

the following axiom, Independence of Undominated Alternatives, which is
proposed in Thomson and Myerson (1980):

Independence of Undominated Alternatives: For all A,B ∈ Σ, if
A ⊆ B and F (A) is weakly efficient on B, then F (B) = F (A).
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It is worth noting that Contraction Independence and Expansion Indepen-
dence are logically implied by the Monotonicity axiom, which is introduced
by Kalai (1977), together withWeak Efficiency, but the converse relation does
not hold. In fact, the monotone path solution, which is proposed by Thomson
and Myerson (1980) and which is characterized by Weak Efficiency and the
monotonicity axiom of Kalai (1977), satisfies both Contraction Independence
and Expansion Independence. On the other hand, we can construct a non-
monotone path solution which satisfies Expansion Independence, Contraction
Independence and Weak Efficiency, and which violates the monotonicity ax-
iom of Kalai (1977).

4 Results and Their Proofs

This section presents our main results and their proofs follow.

Theorem 1: A bargaining solution F is the Nash Solution FNA if and only if
it satisfies Efficiency, Symmetry, Scale Invariance, and Contraction
Independence.

Proof. It can be checked that if F = FNA, then it satisfies the four axioms
of Theorem 1. We therefore show that if a bargaining solution satisfies the
four axioms of Theorem 1, then it must be the Nash solution.
Let F be a bargaining solution satisfying the four axioms of Theorem 1.

For any A ∈ Σ, we first show that

Claim 1: For any x and a that are both efficient in A, and if x ∈ A is such
that

Q
i∈N xi <

Q
i∈N ai, then x 6= F (A).

Let x and a be such that both are efficient in A and
Q
i∈N xi <

Q
i∈N ai.

Suppose to the contrary that x = F (A). Consider B ≡ concomp {x, a}. By
Contraction Independence, it follows that x ∈ F (B).
Now, by choosing α ∈ Rn++ appropriately, so that α(a) = (β, . . . ,β) for

some β ≡ mini∈N {ai}. Denote B0 ≡ α(B), a0 ≡ α(a), and x0 ≡ α(x). Note
that a0 6= x0. By Scale Invariance, F (B0) = x0.
Consider the set [∪π∈Ππ (B0)], and denote it by C. By construction, not-

ing that
Q
i∈N xi <

Q
i∈N ai, C is symmetric, convex, and C ⊇ B0. Moreover,

by the construction of B0, both a0 and x0 are efficient on C. By Efficiency
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and Symmetry, it follows that F (C) = a0. By Contraction Indepen-
dence, F (B0) = a0, which is a contradiction. Therefore, x 6= F (A).
From Claim 1, we must then have that, for any A ∈ Σ,

F (A) ⊆
(
a ∈ A | ∀x ∈ A :

Y
i∈N
ai ≥

Y
i∈N
xi

)
.

Since the right-hand set is a singleton, the non-emptiness of F implies that
F = FNA. ¦

Theorem 2: A bargaining solution F over Σ is the egalitarian Solution if
and only if it satisfies Weak Efficiency, Symmetry, Contraction Inde-
pendence, and Expansion Independence.

Proof. It can be checked that if F = FE, then it satisfies the four axioms of
Theorem 2. Therefore, we need only to show that if a solution satisfies the
four axioms of Theorem 2, it must be the egalitarian solution.
Let F be a bargaining solution satisfying the four axioms of Theorem 2.

By non-emptiness of F and Weak Efficiency, we need only to show the
following claim:

Claim 2: For any A ∈ Σ, any x and a that are weakly efficient in A, if
[ai = aj for any i, j ∈ N ], but xi 6= xj for some i, j ∈ N , then x 6= F (A).

Let x and a be such that both are weakly efficient in A and [xi 6= xj for
some i, j ∈ N ]. Suppose to the contrary that x = F (A). Consider B ≡
comp {x}. Note that B ⊆ A. By Contraction Independence, x = F (B).
Consider the set con [∪π∈Ππ (B)], and denote it by C. By construction,

C is a symmetric convex set having C ⊇ B. By the construction of B and
C, x is efficient on C. Therefore, noting that x = F (B), B ⊆ C and x is
efficient on C, x = F (C) follows from Expansion Independence. Since C
is symmetric, byWeak Efficiency and Symmetry, F (C) must be weakly
efficient and be the equal utility point, which is a contradiction. Therefore,
x 6= F (A). This proves Claim 2 and thus Theorem 2. ¦

Theorem 3: A bargaining solution F over Σ is the Kalai-Smorodinsky Solu-
tion if and only if it satisfies Weak Efficiency, Symmetry, Scale Invari-
ance, and Weak Contraction Independence, and Weak Expansion
Independence.
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Proof. It can be checked that if F = FK , then it satisfies the five axioms of
Theorem 3. We therefore show that if a solution satisfies the five axioms of
Theorem 3, it must be the Kalai-Smorodinsky solution.
Let F be a solution satisfying the five axioms of Theorem 3. By non-

emptiness of F and Weak Efficiency, we need only to show the following
claim:

Claim 3: For any A ∈ Σ, any x and a that are weakly efficient on A, if
[ ai
mi(A)

=
aj

mj(A)
for all i, j ∈ N ] and [ xi

mi(A)
6= xj

mj(A)
for some i, j ∈ N ], then

x 6= F (A).

Let x and a be such that both are weakly efficient on A and [ ai
mi(A)

=
aj

mj(A)

for all i, j ∈ N ], and [ xi
mi(A)

6= xj
mj(A)

for some i, j ∈ N ]. Suppose to the con-
trary that x = F (A). Consider con ({x} ∪ {(mi (A) ,0−i) | i ∈ N} ∪ {0}),
and denote it by B. Note that x is efficient on B. By Weak Contraction
Independence, x = F (B).
By choosing α ∈ Rn++ appropriately, we have α(m (A)) = (1, . . . , 1). Let

B0 ≡ α(B), a0 ≡ α(a), and x0 ≡ α(x). By Scale Invariance, F (B0) = x0.
Consider the set con [∪π∈Ππ (B0)], and denote it by C. From the construc-

tion, C is a symmetric convex set having C ⊇ B0 and m (C) = m (B0) =
α(m (A)). Moreover, by the construction of B0, x0 is efficient on C. By
Weak Expansion Independence, F (C) = x0. However, noting that C
is symmetric, we have, by Weak Efficiency and Symmetry, that F (C)
must be the weakly efficient and equal utility point, which is a contradiction.
Therefore, x 6= F (A). This proves Claim 3 and therefore Theorem 3. ¦

Remark 1: It can be verified that the egalitarian solution is also character-
ized by Weak Efficiency, Symmetry, and Independence of Undom-
inated Alternatives. Note that if we use the axiom Independence of
Undominated Alternatives, which is stronger than Expansion Inde-
pendence, in the characterization of the egalitarian solution, Contraction
Independence becomes superfluous and thus can be dropped out.

Remark 2: If #N = 2, then the Kalai-Smorodinsky Solution is character-
ized by Efficiency, Symmetry, Scale Invariance, and Weak Expansion
Independence. Thus, Weak Contraction Independence is no longer
indispensable to characterize this solution in two person bargaining problems.
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To conclude this section, we make the following observations concerning
the logical independence of the axioms used in each of Theorems 2 and 3.

Proposition 1: The axioms,Weak Efficiency, Symmetry, Contraction
Independence, and Expansion Independence are logically independent.

Proof. It is fairly easy to see that there exists a solution which is not egalitar-
ian and which violates one of the three axioms, Weak Efficiency, Symmetry
and Expansion Independence, respectively, while satisfies the respectively
remaining axioms in Theorem 2. Therefore, in what follows, we show that
there exists a bargaining solution which satisfies Weak Efficiency, Sym-
metry, and Expansion Independence, and violates Contraction In-
dependence. For this purpose, we consider the solution F 1 to be defined
below. Given λ ∈ [0, 1], define the bargaining solution F λLE as F λLE (A) ≡
λ ·FE (A)+(1− λ) ·FL (A) for any A ∈ Σ, where FL : Σ→ Rn+ is the lexico-
graphic egalitarian solution defined as usual. Note that F λLE (A) = FE (A) if
and only if FE (A) is efficient on A ∈ Σ. For instance, if A ∈ Σ is symmetric
or strictly comprehensive, then FE (A) is efficient on A. Let Σsc be the set
of all bargaining problems in Σ each of which is also strictly comprehensive.
Now, consider the solution F 1 as follows. For some λ ∈ (0, 1), for all

A ∈ Σ,

(1) if A ∈ Σsc or A = comp {x} for some x ∈ Rn+, then F 1(A) = FE(A);

(2) otherwise, F 1(A) = F λLE(A).

It can be checked that F 1 satisfies Symmetry and Weak Efficiency.
Next, we show that F 1 satisfies Expansion Independence. Let A,B ∈ Σ
be such that A ( B. There are two cases to be distinguished: Case 1:
A ∈ Σsc or A = comp {x} for some x ∈ Rn+, and Case 2: neither A ∈ Σsc

nor [A = comp {x} for some x ∈ Rn+]
Case 1: A ∈ Σsc or A = comp {x} for some x ∈ Rn+. In this case, we have
F 1(A) = FE(A).
Case 1-1: A ∈ Σsc. If F 1(A) is efficient on B, then it must be true that
F 1(B) = FE(B), and therefore F 1(A) = F 1(B). If F 1(A) is not efficient on
B, then the axiom Expansion Independence is trivially satisfied.
Case 1-2: A = comp {x} for some x ∈ Rn+. If F 1(A) = FE(A) is efficient
on B, then A must be symmetric, and B must not be the type of comp {y}
for some y ∈ Rn+. Then, if B ∈ Σsc, then F 1(B) = FE(B), so that F 1(A) =
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F 1(B) by the fact that F 1(A) is efficient on B. If B /∈ Σsc, then F 1(B) =
F λLE(B) = FE(A) = F 1(A), since F 1(A) is efficient on B. If, on the other
hand, F 1(A) is not efficient inB, then the axiomExpansion Independence
is trivially satisfied.
Case 2: neither A ∈ Σsc nor [A = comp {x} for some x ∈ Rn+]. In this case,
we have F 1(A) = F λLE(A).
Case 2-1: F λLE(A) = FE(A). Note that this case is possible whenever
FE(A) is efficient on A. Then, if F 1(A) is also efficient on B, it must be true
that F 1(A) = FE(B) = FL(B) = F λLE(B). Therefore, F 1(A) = F 1(B).
Case 2-2: F λLE(A) 6= FE(A). This case occurs whenever FE(A) is not
efficient on A. Therefore, by definition, F 1(A) = F λLE(A) is not efficient
on A either. In this case, it is impossible for F λLE(A) to be efficient on B.
Therefore, the axiom Expansion Independence is trivially satisfied.
In summary, F 1 satisfies Expansion Independence.
We next show that F 1 violates Contraction Independence. Let A ∈ Σ

be neither A ∈ Σsc nor [A = comp {x} for some x ∈ Rn+]. Further, let
A ∈ Σ be such that FE(A) is not efficient on A. Then, F 1(A) = F λLE(A) 6=
FE(A). Let B ≡ comp {F 1(A)}. Then, by definition, F 1(B) = FE(B) 6=
F λLE(A). Noting that B ( A and F 1(A) ∈ B, it must be true that F 1
violates Contraction Independence. ¦

Proposition 2: For #N > 2, the axioms, Weak Efficiency, Symme-
try, Scale Invariance, Weak Contraction Independence, and Weak
Expansion Independence are logically independent.

Proof. Again, it is relatively easy to see that there exists a bargaining solu-
tion that violates each of the axioms,Weak Efficiency, Symmetry, Scale
Invariance, andWeak Expansion Independence, respectively, and that
satisfies the other remaining axioms, respectively, of Theorem 3. Therefore,
in what follows, we show that there exists a bargaining solution which satisfies
Weak Efficiency, Symmetry, Scale Invariance, andWeak Expansion
Independence, but violates Weak Contraction Independence. Let
Σu ≡ {A ∈ Σ | ∀i ∈ N : mi (A) = 1}. W.l.o.g., in the following discussion,
we will focus on the case of #N = 3. For #N = 3, let

43 ≡ con {0, (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 0, 1) , (0, 1, 1)} .
Since #N = 3, 43 ∈ Σu. Note FK (43) = F

E (43) =
¡
1
2
, 1
2
, 1
2

¢
, which is not

efficient on 43. Consider the following solution, F
2, which is defined below:

Let λ ∈ (0, 1) be given, for all A ∈ Σ,
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(1) if A ∈ Σu and,

(1-1) if A ⊆ 43 with F
K (43) = F

E (43) ∈ A, then F 2(A) = F λLE(A);

(1-2) if otherwise, then F 2(A) = FK(A);

(2) if A /∈ Σu, then F 2(A) = α(F 2(B)) for some B ∈ Σu and some α ∈ Rn++
such that α(B) = A.

It is easy to see that F 2 satisfies Symmetry, Scale Invariance, and
Weak Efficiency. By using a similar method as that in the proof of Propo-
sition 1, we can check that F 2 satisfies Weak Expansion Independence
and that F 2 violatesWeak Contraction Independence. ¦

5 Concluding Remarks

Our results on the characterizations of the three solutions are summarized
in the following table.

Table 1

Axioms\ Solutions NS ES KS

(E) ⊕ × ×
(WE) ° ⊕ ⊕
(S) ⊕ ⊕ ⊕
(SI) ⊕ × ⊕
(CI) ⊕ ⊕ ×
(WCI) ° ° ⊕
(EI) × ⊕ ×
(WEI) × ° ⊕

where

NS is for Nash Solution, ES for Egalitarian Solution, and KS for Kalai-
Smorodinsky Solution

⊕ stands for that the axiom is used for the characterization,
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° stands for that the axiom is satisfied by the solution,

× stands for that the axiom is violated by the solution.

Clearly, all three solutions satisfy axioms Weak Efficiency, Symmetry
and Weak Contraction Independence. The Nash solution satisfies all but
Expansion Independence and Weak Expansion Independence, the egalitar-
ian solution satisfies all but Efficiency and Scale Invariance, and the Kalai-
Smorodinsky solution violates Efficiency, Contraction Independence and Ex-
pansion Independence while satisfies all the other axioms. It is also worth
noting that Theorem 2 (resp. Theorem 3) constitutes a strengthening of
the original characterization of the egalitarian solution (resp. the Kalai-
Smorodinsky solution) by Kalai (1977) (resp. Kalai and Smorodinsky (1975)),
since the combination of Contraction Independence and Expansion Indepen-
dence (resp. Weak Contraction Independence and Weak Expansion Inde-
pendence) is logically weaker than the monotonicity axiom (resp. the weak
monotonicity axiom).
As far as contraction and expansion properties are concerned, it is in-

teresting to note that the egalitarian solution satisfies all the contraction
and expansion properties discussed in this paper, the Nash solution fails the
two expansion properties while survives the two contraction properties, and
the Kalai-Smorodinsky solution satisfies the weaker versions of contraction
and expansion properties. The fact that the Kalai-Smorodinsky solution has
some constrained contraction and expansion properties gives us some new
insights on the rational choice property of this solution, which the previous
literature does not provide since it is widely considered that it has no rational
choice property.
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