Discussion Paper Series A No.444

Vertical Intra-Industry Trade and the Division of Labor in East Asia

Keiko Ito (International Centre for the Study of East Asian Development), and Kyoji Fukao (The Institute of Economic Research, Hitotsubashi University),

October 2003

The Institute of Economic Research Hitotsubashi University Kunitachi, Tokyo, 186-8603 Japan

Vertical Intra-Industry Trade and the Division of Labor in East Asia

Paper prepared for the Fourteenth Annual East Asian Seminar on Economics *International Trade* September 5-7, 2003, Taipei

Keiko Ito International Centre for the Study of East Asian Development

> Kyoji Fukao* Hitotsubashi University and RIETI

> > August, 2003

^{*} Correspondence: Kyoji Fukao, Institute of Economic Research, Hitotsubashi University, Naka 2-1, Kunitachi, Tokyo 186-8603 JAPAN. Tel.: +81-42-580-8359, Fax.: +81-42-580 -8333, e-mail: <u>k.fukao@srv.cc.hit-u.ac.jp</u>. The authors are grateful to Yoshimasa Yoshiike and Tangjun Yuan for undertaking meticulous data calculations.

Abstract

This paper investigates the deepening of the international division of labor and its effect on factor intensities in Japan, mainly focusing on the manufacturing sector. In the first half of the paper, we analyze factor contents of trade and find that Japan's factor content net-exports of capital and non-production labor grew rapidly while net-exports of production workers fell by a large amount. Interestingly, the decline in the factor content of net-exports of production workers was almost entirely caused by Japan's trade with China and Hong Kong.

According to our decomposition analyses, however, most of the macro-economic change in the capital-labor ratio and the change in the skilled-labor ratio are attributable to a "within-industry" shift rather than a "between-industry" shift. Although we clearly see a drastic increase in VIIT and outsourcing to foreign countries, particularly to Asian countries, our empirical analysis provides only weak evidence that the deepening international division of labor contributes to the change in factor intensities in each industry. Our results suggest that specialization in the export of skilled-labor-intensive products may have contributed to the increase in the relative demand for skilled (professional, technical, managerial, and administrative) labor within industry. However at the same time, our results also imply that changes in trade patterns (specialization in capital-intensive production) did not offset the excess supply of capital in Japan. That is, Japan is not adequately specializing in the export of capital-intensive goods despite the fact that the price of capital is low and capital is abundant.

1. Introduction

Until the beginning of the 1990s, Japan accomplished comparatively high economic growth through the exceptionally rapid accumulation of physical and human capital. Table 1.1 compares growth accounting results for the US economy (by Jorgenson, Ho, and Stiroh, 2002) with those for the Japanese economy (Fukao, Inui, Kawai, and Miyagawa, 2003). We can see that, compared with the US, Japan's economic growth until 1990 was relatively more dependent on labor quality growth and increases in physical capital per capita. However, as is well-known, high economic growth based on rapid capital accumulation is not sustainable in the long-run because of the diminishing rate of return to physical and human capital.

According to several pieces of evidence, Japan seems to be caught in this trap of diminishing rates of return. Figure 1.1 shows that as the physical capital output ratio increased over the past three decades in Japan, the rate of return to physical capital declined continuously. Similarly, Pyo and Nam (1999) showed that South Korea and Japan both enjoyed a more rapid rise in their capital output ratios than other OECD countries but also suffered a faster decline in the rate of return to capital. Katz and Revenga (1989), meanwhile, found that while educational earnings differentials expanded drastically in the US in the 1980s, the college wage premium in Japan increased only slightly. As Genda (1997) showed, the reason is that the employment of skilled workers such as older college graduate males expanded rapidly in Japan, and this excess supply of skilled workers relative to the limited availability of management positions contributed to the stagnation of earnings for older college graduates. Probably partly as a result of these declines in the rate of return, the accumulation of physical and human capital has slowed down over the past decade (Table 1.1).¹

We should note that according to standard international trade theory, rapid growth based on capital accumulation will be sustainable if the economy gradually specializes in physical and human capital intensive products. Under such a specialization process, the factor price equalization mechanism will be at work and the rate of return to physical and human capital will not decline. For Japan, the 1990s were an age of "globalization": the country seems to have expanded its international division of labor with other East Asian countries through international trade and direct investment. The purpose of this paper is to examine this deepening of the international division of labor and evaluate how much of this diminishing rate of return mechanism was cancelled out by the international division of labor.

Several recent studies, such as Feenstra and Hanson (1996b, 1999, 2001), Kimura (2001), and Fukao, Ishido, and Ito (2003), have shown that the fragmentation of the production process and vertical intra-industry trade between developed and developing economies may have enhanced the

¹ Godo (2001) found that the speed of catch-up of Japan's average schooling years to the US level slowed down during the 1980s because of the decline in the Japan/US ratio in average schooling years of tertiary education.

vertical division of labor within each industry. This type of international division of labor would cause a deepening of the physical and human capital within each industry in developed economies. However, since the resulting capital deepening will occur within each industry, we cannot correctly analyze this type of division of labor by using inter-industry trade data. Consequently, we study the international division of labor by looking at both inter-industry trade and intra-industry trade.

The remainder of the paper is organized as follows. In section 2, we examine Japan's inter-industry trade and factor contents. In section 3, we take a broad look at Japan's intra-industry trade with vertical division of labor. In section 4, after providing an overview of the changes in Japan's trade patterns by industry, we conduct econometric analyses to investigate the determinants of the changes in factor intensities using both industry-level data and firm-level data. Section 5, finally, presents our conclusions.

2. Japan's Inter-industry Trade and Factor Contents

In this section, we take a general look at the pattern of Japan's inter-industry trade in the last two decades. Next, we estimate how factor contents in Japan's international trade changed during this period. We also examine the macro-economic change in the capital-labor ratio and the change in the skilled-labor ratio (the percentage of skilled labor in total labor) by decomposing these into the contribution of the increase in the share of non-production workers within each industry ("within effect") and the contribution of the reallocation between industries ("between effect").

2.1 Overview of Japan's International Trade

Although Japan's overall import-GDP ratio has gradually declined over the last two decades, imports of manufactured products have actually grown faster than the economy as a whole (Table 2.1). As Figure 2.1.A shows, the increase in imports mainly concentrated on electrical machinery and labor intensive goods, such as apparel and wooden products, which in this figure are classified as "other manufacturing products." Since the share of the manufacturing sector in GDP declined during this period, the ratio of imports of manufactured products to gross value added in the manufacturing sector has increased rapidly: by 11.5 percentage-points from 15.2% in 1985 to 26.7% in 2000. The US experienced a similar trend during the 1980s, when this ratio jumped by 12.4 percentage-points from 18.3% in 1978 to 30.7% in 1990 (Sachs and Shatz 1994). Therefore we can expect similar size of impacts from the recent surge of Japan's imports on its manufacturing sector as that occurred in the US in the 1980s.²

INSERT Table 2.1 and Figure 2.1

² Comparing export shares and import penetration in the US, Canada, UK and Japan during the period from 1974-93, Campa and Goldberg (1997) found import penetration to be extremely stable and significantly lower in Japan than in the other countries. However, if we were to conduct a similar analysis using more recent data, it seems probable that this conclusion no longer holds.

On the other hand, the commodity composition of Japan's exports at the two-digit level has remained relatively stable over the last fifteen years (Figure 2.1.B). Nevertheless, looking at trade patterns at a more detailed commodity classification level, it becomes clear that Japan's specialization has changed: the country is increasingly specializing in the export of capital goods and key parts and components in the automobile and electrical machinery sector, while it has become a net importer of many household electrical goods.³

Japan's new imports of electrical machinery and labor intensive products were mainly provided by East Asian economies. Figure 2.2 shows that nine East Asian economies (China, Hong Kong, Taiwan, Korea, Singapore, Indonesia, Thailand, the Philippines, and Malaysia) provided 64.2 % of Japan's electrical machinery imports and 49.2 % of Japan's imports of "other manufacturing products" in 2000. The East Asian economies' share in Japan's total imports of machinery and intermediate products such as metal products and chemical products has also increased rapidly.

INSERT Figure 2.2

As a result of these trends, East Asia during the 1990s became the most important destination for and origin of Japan's international trade. As Figure 2.3 shows, trade with the nine East Asian economies accounted for 48.5 % of Japan's total manufactured imports and 41.0 % of total manufactured exports in 2000.

INSERT Figure 2.3

This rise in Japan's imports of labor intensive products and exports of capital and technology intensive products (such as machinery and advanced intermediate products) can be easily recognized as a deepening of the international division of labor with the relatively unskilled-labor abundant East Asian economies. But how can we interpret the rapid increase in the two way trade in electrical machinery? Table 2.2, which presents Japan's bilateral trade in electrical machinery with China and Hong Kong in 1999 at the 3-digit level, provides a clue.

INSERT Table 2.2

This table shows two important facts. Firstly, at the detailed commodity level, there seems to be a division of labor within the electrical machinery industry. With China and Hong Kong, Japan is a net importer of relatively labor-intensive products (such as television and radio-broadcast receivers and automatic data processing machines) and a net exporter of technology-intensive other products. This means that in order to correctly understand the division of labor and factor contents in trade between Japan and East Asia, we need to analyze trade patterns at the detailed commodity level; otherwise, the analysis will suffer from aggregation bias problems (Feenstra and Hanson 2000).

 $^{^3}$ The share of machine parts in Japan's total exports to East Asia increased from 31.7 % in 1990 to 40.2 % in 1998, while the share of capital goods, which include some machine parts, increased from 53.2 % to 56.8 % during the same period (MITI 1999).

The second important fact this table shows is the existence of huge intra-industry trade between Japan and China plus Hong Kong. For example, in the case of television receivers, the total trade value is 37 times greater than the trade balance. It seems that we need to analyze intra-industry trade in order to correctly evaluate the impact of trade on Japanese economy.

2.2 Factor Contents in Japan's Trade of Manufacturing Products

In this subsection, we analyze the changes in factor contents in Japan's trade. In order to avoid aggregation bias, we should calculate factor contents at the most disaggregated level possible.⁴ The most disaggregated data on direct factor requirements are those available in the *Report on Industrial Statistics* of the Ministry of International Trade and Industry, which is based on the *Census of Manufactures*. The data is classified by the 4-digit Standard Industrial Classification for Japan, which listed 540 manufacturing industries in 1990.

There is no direct converter between this industry classification and the 9-digit HS classification used by the Ministry of Finance for the compilation of Japan's international trade statistics. In order to link the two sets of data – factor requirements and international trade – we used the basic industry classification of the *Japan Input-Output Tables*, 1990 (1994) by the Management and Coordination Agency, which lists 341 manufacturing industries, as our benchmark classification. Using supplementary converter tables of the I-O statistics, we converted both the factor requirement data and the international trade data into the basic I-O classification. As a result, we obtain factor requirement and international trade data for 246 manufacturing industries.⁵ In order to estimate indirect factor requirements, we used the corresponding I-O table.

Ideally, we should use up-to-date factor requirement data and I-O tables in order to take account of technology change in Japan. Unfortunately, the factor requirement data is available only until 1990, because the *Census of Manufactures* after that year does not cover headquarter activities. Because of this constraint, we used constant factor requirement and I-O data of 1990 for our analysis of the entire 1980-2000 period.⁶

Factor content in Japan's trade in year t (t = 1980, 1990, 2000) is calculated by

 $\boldsymbol{X}_{t} = \boldsymbol{D} \left(\boldsymbol{I} - \boldsymbol{A} \right)^{-1} \boldsymbol{T}_{t}$

⁴ Using Management and Coordination Agency, Japanese Government "1980-85-90 Linked Input-Output Tables," Sakurai (2001) estimated factor contents in Japan's trade for the year of 1980, 85, and 90.

⁵ The factor requirement data of the *Census of Manufactures* is on an establishment basis and each establishment is classified by its most important product. Since many establishments produce various commodities simultaneously, this classification method is problematic. The I-O converter from the *Census of Manufacturers* to the basic I-O classification takes account of this problem and converts establishment-based data into activity-based data.

⁶ Because of this methodology, there is a risk of overestimating factor contents in recent trade in the case of industries where total factor productivity has grown rapidly.

where $(K \times 1)$ vector $X_t = [x_{k,t}]$ denotes the total contents of factor *k* in Japan's trade of year *t*. $(K \times J)$ matrix $D = [d_{k,j}]$ denotes the quantity of primary factor *k* directly used per unit of output in industry *j* in year 1990. $(J \times J)$ matrix *A* is the input-output matrix of year 1990.⁷ $(J \times 1)$ vector T_t is the net-export vector of year *t* in 1990 prices. In order to derive trade data in 1990 prices, we used the deflators of the Management and Coordination Agency's *Japan Linked Input-Output Table* (various years) and the *Wholesale Price Index* of the Bank of Japan at the 3-digit level.⁸

We analyzed factor content in terms of the following four primary factors: physical capital (in 1990 prices, book value), production labor (number of workers), non-production labor (number of workers), and land (in 1990 prices, book value). In order to analyze how the increase in Japan's trade with the East Asian economies affected Japan's factor markets, we subdivided Japan's total net exports in each industry into gross exports and gross imports by six regions, namely, (1) China and Hong Kong, (2) the NIEs-3 (Taiwan, South Korea, and Singapore), (3) the ASEAN-4 (Indonesia, Thailand, Malaysia, and The Philippines), (4) the US, (5) the EU, and (6) all other economies.

The results of the factor content analysis for the years 1980, 1990, and 2000 are reported in Table 2.3. Reflecting Japan's huge trade surplus, Japan is a net exporter of all the four primary factors. For example, according to our calculations, in the year 2000, Japan recorded factor-content net exports of 363,000 production workers, which represents 4.7 % of the total production workers (7,717,000) in manufacturing in 1990. Compared with the trade pattern observed in 1990, the 2000 figure for factor content net-exports of production labor represents a decline of 42 %. This decline was almost entirely caused by Japan's trade with China and Hong Kong (Table. 2.4). In the year 2000, about one-third of factor content gross-imports of production workers came from China and Hong Kong (Table 2.3).

INSERT Table 2.3 and Table 2.4

In the case of non-production workers, there were factor content net-exports of 378,000 production workers in the year 2000, which represents 10.9 % of the total non-production workers (3,456,000) in manufacturing in 1990. Compared with trade patterns in 1980, net-exports of non-production workers have increased by 89,000, which is equivalent to 2.6 % of the total non-production workers in 1990. The major increase in this factor content occurred in Japan's trade with the US (Table 2.4).

In the case of land, factor content net-exports in 2000 amounted to 1.36 trillion yen (in 1990

⁷ The input-output matrix here covers only manufacturing industries. Therefore, our analysis does not include indirect factor requirements through changes in production in non-manufacturing industries.

⁸ The conversion of trade statistics at the HS 9-digit level into trade data at classified at the basic industry level of the I-O tables in 1990 price was conducted by H. Nosaka, T. Inui, K. Ito and K. Fukao as part of the Japan Industrial Productivity (JIP) database project. The result is included in the JIP database. For more detail on this database see Fukao, Inui, Kawai, and Miyagawa (2003).

prices), which is equivalent to 10.5 % of the total land value (12.9 trillion yen) used in manufacturing in 1990. Net exports of land have gradually declined over the last twenty years (Table 2.4).

Capital stock factor content net-exports in 2000, meanwhile, stood at 9.12 trillion yen (in 1990 prices), which represents 16.5% of the total capital stock (55.4 trillion yen) in manufacturing in 1990. Compared with 1980, this represent an increase in net-exports of capital stock by 1.1 trillion yen or 2.0% of the total capital stock in 1990 (Table 2.4).

Relative to the total amount of each of the four primary input factors used in manufacturing, Japan exported a large amount of capital and non-production labor but only a small amount of production labor in 2000. Since non-production workers on average are more educated than production workers and Japan is a country abundant in physical and human capital, the above results are consistent with the Heckscher-Ohlin theory.

As Table 2.3 shows, in the period from 1980-2000, Japan's factor content net-exports of production workers fell by 3.3 %, while net-exports of non-production workers rose by 2.6 %. This change in trade patterns has the effect of increasing the implied supply-ratio of production/non-production workers available to the manufacturing sector for other use by about 5.9 %. More than one-half of this change (3.2 %) was caused by Japan's trade with China and Hong Kong.

During 1980-2000, Japan's factor content net-exports of capital stock grew by 2.0 %, while net-exports of workers overall (production and non-production) decreased by 1.5 %. This change in the trade pattern has the effect of reducing the implied supply of capital stock per worker available to the manufacturing sector for other use by 3.5 %. Thus, compared with the impact on the implied supply ratio of production/non-production workers, the effect of recent changes in trade patterns on the implied supply of capital stock per worker has been small.

By a similar calculation using the results of factor content analysis at the 4-digit level carried out by Feenstra and Hanson (2000), we can evaluate the impact of US trade on its factor markets. This shows that in the period of 1982-94, changes in US trade patterns had the effect of increasing the implied supply ratio of production/non-production workers available to the manufacturing sector for other use by 1.0 %, while the implied supply of capital stock per worker available to the manufacturing sector for other use fell by 2.3 %.⁹ Thus, compared with the US, Japan experienced a much more drastic change in factor content net-exports over the last two decades in terms of its implied supply ratio of production/non-production workers available to the manufacturing sector for

 $^{^9}$ In the period of 1982-94, the US saw an increase in its factor content net-imports of production (non-production) workers in manufacturing by 8.2 % (7.2 %). It also experienced a rise in factor content net-imports of capital stock in manufacturing by 5.5 % and a decline in net-exports of (production plus non-production) workers by 7.8 % of total workers in manufacturing.

other use.

The trends shown here mean that, Japan's factor content net-exports have changed in a direction that offsets the effect of the accumulation of physical and human capital per capita. Japan has come to export more physical and human capital intensive products over the past two decades. However, compared with the rapid deepening of physical and human capital in the macro-economy described in Section 1, the offsetting effect of international trade seems to be small. We analyze this issue in more detail in the following subsection.

2.3 Decomposition of Physical and Human Capital Deepening

Several recent studies - such as Feenstra and Hanson (1996b, 1999, 2001), Kimura (2001), and Fukao, Ishido, and Ito (2003) - have shown that the fragmentation of the production process and vertical intra-industry trade between developed and developing economies may have enhanced the vertical division of labor within each industry. This type of international division of labor will cause a deepening of physical and human capital within each industry of the developed economies. Therefore, we cannot correctly analyze this type of division of labor by using inter-industry trade data as we did in the previous subsection. In this section, we therefore evaluate the magnitude of the deepening of physical and human capital within each industry

We consider the increase in the share of non-production workers in all manufacturing industry as well as the Japanese economy as a whole. The increase in this share - which is defined by $(E_{n,t+1}/E_{t+1})$ - is decomposed into the increase in the share of non-production workers within each industry ("within effect") - which is defined by $\sum_{i} (((E_{n,i,t+1}/E_{i,t+1}) - (E_{n,i,t}/E_{i,t})))^* ((E_{i,t+1}/E_{t+1}) + (E_{i,t}/E_{t+1}))/2)$ where $E_{n,i,t}$ denotes the number of non-production workers in industry *i* in year *t* and $E_{i,t}$ denotes the number of all the workers in industry *i* in year *t* - and the reallocation between industries ("between effect") - which is defined by $\sum_{i} (((E_{i,t+1}/E_{t+1}) - (E_{i,t}/E_{t}))^* ((E_{n,i,t+1}/E_{i,t+1}) + (E_{n,i,t}/E_{i,t}))/2)$.

We also decomposed the increase of the share of skilled workers in total workers in a similar way. For these decompositions, we used the data of the *Population Survey*. "Skilled workers" are persons whose profession is classified either as professional and technical or as managerial and administrative. We defined "non-production workers" here as persons whose profession one of the following categories: professional and technical occupations, managers and administrators, clerical and secretarial occupations, sales occupations, services occupations, protective occupations, occupations in agriculture, forestry and fishing, occupations in transportation and telecommunications, and other occupations. The definition of "non-production workers" is much broader than the definition of "skilled workers" and includes not-highly educated workers.

Figure 2.4 shows how the shares of non-production workers and skilled workers changed during 1980-2000. In this period, the share of non-production workers in manufacturing increased

from 27.7% in 1980 to 30.7% in 2000.¹⁰ The share of skilled workers also grew during 1980-2000: in the manufacturing sector, it rose from 9.0% to 10.5%, while in the economy as a whole it increased from 9.8% to 13.9%.¹¹

INSERT Figure 2.4

Ideally, we should use the most disaggregated cross-industry data available for our decomposition analysis. We used the 2-digit industry classification of the JIP database for our decomposition analysis.¹² We should note that our estimates of the "within" effect might suffer from upward biases because of this problem.

The results of our decomposition analysis are reported in Table 2.5. The table shows that the "between" effect was positive in all cases. It indicates that the human capital intensive industries have continuously increased their share both in the manufacturing sector and in the economy as a whole. The "within" effect also took positive values, with the exception of two cases in the period of 1990-2000, and this effect was always greater than the "between" effect except for the two cases. The major implication of our results is that the "within" effect is very large. Some part of the "within" effects may have been caused by the international division of labor within each industry. We analyze this issue in section 4.

INSERT Table 2.5

Next, we decompose the increase in the capital/labor ratio either in the manufacturing sector or in Japanese economy as a whole using a similar method to the one employed in our analysis of labor. In Figure 2.5, the cumulative change of the logarithm of the capital labor ratio in manufacturing is decomposed into the "between" effect and the "within" effect. We used the JIP database for the calculation. The labor input data reflects changes in labor quality. Figure 2.5 shows that there was a negative "between" effect throughout almost the entire 1970-2000 period. That is, in manufacturing, there was a trend of capital intensive sectors to shrink. On the other hand, in the previous subsection we saw that the factor content net-exports of Japan's trade have moved in a direction that offsets the effect of the per-capita accumulation of physical and human capital. Probably one plausible explanation for this difference is changes in domestic demand. In Japan, the private investment-GDP ratio has gradually fallen over the past three decades. If capital goods are more capital intensive, then the decline in private investment may have canceled out the "between" effect caused by international trade.

 $^{^{10}}$ This latter value, though, is substantially below the peak of 32.3% reached in 1997. The decline in the share of non-production workers since 1998 is most likely the result of firms' restructuring efforts – the dismissal of managers, sales personnel, etc. – following the further deterioration of the Japanese economy.

¹¹ For details on the compilation of the skilled/non-production workers data, see Appendix B.

 $^{^{12}}$ In the following decomposition, we used data of 35 manufacturing industries and 43 non-manufacturing industries.

INSERT Figure 2.5

Figure 2.6 shows the decomposition of the cumulative change in the logarithm of the capital labor ratio in the whole economy. Similar to the case of the manufacturing sector, there was a negative "between" effect almost continuously in the whole economy.

INSERT Figure 2.6

3. Japan's Intra-industry Trade with Vertical Division of Labor

Recent studies on intra-industry trade (IIT) have brought to light rapid increases in vertical IIT, i.e. intra-industry trade where goods are differentiated by quality. As Falvey (1981) pointed out in his seminal theoretical paper, commodities of the same statistical group but of different quality may be produced using different mixes of factor inputs. Moreover, developed economies may export physical and human capital-intensive products of high-quality and import unskilled labor-intensive products of low quality from developing economies. Through this mechanism, an increase in vertical IIT may have a large impact on factor demands within each manufacturing industry in Japan. In this section, we explain how we compiled our data and provide an overview of Japan's VIIT in electrical machinery with East Asian countries.

3.1 Measurement Method and Data Source of Intra-Industry Trade

In order to identify vertical and horizontal IIT we adopt a methodology used by major preceding studies on vertical IIT, such as Greenaway, Hine, and Milner (1995) and Fontagné, Freudenberg, and Péridy (1997). The methodology is based on the assumption that the gap between the unit value of imports and the unit value of exports for each commodity reveals the qualitative differences of the products exported and imported between the two economies.

We break down the bilateral trade flows of each detailed commodity category into the following three patterns: (a) inter-industry trade (one-way trade), (b) intra-industry trade (IIT) in horizontally differentiated products (products differentiated by attributes), and (c) IIT in vertically differentiated products (products differentiated by quality). Then the share of each trade type is defined as:

$$\frac{\sum_{j} (M_{kk'j}^{Z} + M_{k'kj}^{Z})}{\sum_{j} (M_{kk'j} + M_{k'kj})}$$
(2.1)

where each variable is defined as

 $M_{kk'j}$: value of economy k's imports of product j from economy k'

 $M_{k'kj}$: value of economy k''s imports of product j from economy k

 $UV_{kk'j}$: average unit value of economy k's imports of product j from economy k'

 $UV_{k'kj}$: average unit value of economy k''s imports of product j from economy k.

The upper-suffix Z denotes one of the three intra-industry trade types, i.e., "One-Way Trade" (OWT)

"Horizontal Intra-Industry Trade" (HIIT) and "Vertical Intra-Industry Trade" (VIIT) as in Table 3.1.

For our analysis, we chose to identify horizontal IIT by using the range of relative export/import unit values of 1/1.25 (i.e., 0.8) to 1.25.

	51			
Туре	Degree of trade overlap	Disparity of unit value		
"One-Way Trade" (OWT)	$\frac{Min(M_{kk'j}, M_{k'kj})}{Max(M_{kk'j}, M_{k'kj})} \le 0.1$	Not applicable		
"Horizontal Intra-Industry Trade" (HIIT)	$\frac{Min(M_{kk'j}, M_{k'kj})}{Max(M_{kk'j}, M_{k'kj})} > 0.1$	$\frac{1}{1.25} \le \frac{UV_{kk'j}}{UV_{k'kj}} \le 1.25$		
"Vertical Intra-Industry Trade" (VIIT)	$\frac{Min(M_{kk'j}, M_{k'kj})}{Max(M_{kk'j}, M_{k'kj})} > 0.1$	$\frac{UV_{kk'j}}{UV_{k'kj}} < \frac{1}{1.25} \text{ or } 1.25 < \frac{UV_{kk'j}}{UV_{k'kj}}$		

Table 3.1 Categorization of trade types

We used Japan's customs data provided by the Ministry of Finance (MOF). Japan's customs data are recorded at the 9-digit HS88 level and the data classified by HS88 are available from the year 1988.¹³ In Japan's customs statistics, export data are recorded on an f.o.b. basis while import data are on a c.i.f. basis. We should note that our estimate of the VIIT share is biased upward because of this difference.¹⁴

Appendix Table A shows details of our customs data on electrical machinery for the case of Japan's trade with China for the year 2000. Commodities are listed in a descending order of trade values (sum of exports plus imports) between Japan and China. The table contains information on the top 10 commodities. These 10 commodities cover 33% (594 billion yen) of all the electrical machinery trade between the two countries, which consists of 309 commodities in our adjusted classification. We were able to identify the trade patterns for all the top 10 commodities. Two commodities were classified as OWT. Two commodities were classified as HIIT. The remaining six

¹³ The 9-digit HS88 code has been changed several times for some items, and the HS code was revised in 1996. Using the code correspondence tables published by the Japan Tariff Association for code changes, we made adjustments to make the statistics consistent with the original HS88 code.

¹⁴ In the case of our data on VIIT in electrical machinery, which is used in this section, we adjusted the discrepancy between the export and import data in the following way. First, using the PC-TAS (Personal Computer Trade Analysis System) published by the United Nations Statistical Division, we calculated the sum of Japan's import value (c.i.f. basis) of electrical machinery (HS88 2-digit code: 85) from all the trading partners for 1996-2000. Next, using the PC-TAS data, we also calculated the sum of the trading partners' export value (f.o.b. basis) of electrical machinery to Japan for 1996-2000. Then, we calculated the ratio of Japan's total imports (c.i.f. basis) to the trading partners' total exports to Japan (f.o.b. basis), which was 1.1235. In order to convert the export data of Japan's customs statistics to a c.i.f. base, we multiplied all the export value data by 1.1235.

commodities were classified as VIIT. In the case of these six commodities, the unit values of Japan's exports were greater than China's. In vertical IIT with China, Japan mainly exports products of higher unit value.

3.2 Japan's Foreign Direct Investment and Intra-Industry Trade with East Asia: The Case of the Electrical Machinery Industry

In this subsection we provide an overview of the intra-industry trade in electrical machinery between Japan and other East Asian countries using our data.

Figure 3.1 shows the share of the trade types for Japan's trade in the electrical machinery industry by partner region or economy in 1988, 1994 and 2000. The figure reveals a dramatic increase in VIIT in Japan's trade with China and the ASEAN countries from 1988 to 2000. The share of VIIT in the bilateral trade between Japan and China grew remarkably: from less than 10% in 1988 to nearly 60% in 2000. As for the ASEAN countries, the VIIT share increased during this period for all the countries, except Malaysia (though in the trade with the Philippines the share largely fluctuated while in the trade with Thailand, it remained relatively stable during the 1990s).

INSERT Figure 3.1

What factors have contributed to the recent increase in VIIT in East Asia? As widely perceived, Japanese MNEs in the electrical machinery industry have been actively expanding their overseas production since the late 1980s. According to METI (2001), the ratio of overseas production for the Japanese electrical machinery industry rose from 11.4% in 1990 to 20.8% in 1998, which is much higher than the average overseas production ratio for overall manufacturing, which stood at only 13.1% in 1998. Moreover, 8.5% out of the 20.8% is attributed to the Asian region, while 7.0% accrues to North America and 4.6% to Europe. Table 3.2 presents the estimated sales amount by Japanese-affiliated firms in the electrical machinery industry in 1988, 1994, and 2000. Looking at the share of each region or country in total sales by Japanese-affiliated firms, China and the ASEAN countries increased their shares remarkably from 1988 to 2000. It would seem, therefore, that the boost in overseas production by Japanese MNEs in China and the ASEAN countries has been promoting VIIT between Japan and these countries.

INSERT Table 3.2

4. Econometric Analysis

So far, we found that the macro-level capital-labor ratio has been increasing over the last two decades, and that most of the increase is attributable to the "within-industry" shift and not the "between-industries" shift. Moreover, most of the macro-level increase in the skilled/non-production labor share in the total number of workers has also been induced by the within-industry shift. In previous studies, it has been argued that outsourcing (the import of intermediate inputs) or the international division of labor (fragmentation) may have contributed to an increase in the relative

demand for skilled labor. That is, if firms fragment their production into discrete activities and move non-skill-intensive activities abroad, then trade will shift employment toward skilled workers within those industries. Feenstra and Hanson (1996a, 1996b, 1999) and Hijzen, Görg and Hine (2003), for example, provide econometric evidence of a positive relationship between outsourcing and the demand for skilled labor. In Japan, although the international fragmentation of production has been increasing very rapidly and has contributed to changed trade patterns, studies which analyze the impact of fragmentation on labor and capital are very limited.¹⁵ In the following subsections, we briefly outline the changes in vertical intra-industry trade (VIIT) patterns and outsourcing by industry in Japan for the period from 1988 to 2000.¹⁶ We also discuss the relationship between changes to investigate the determinants of the observed growth in the skilled-labor share in total workers and in the capital-labor ratio. Finally, similar econometric tests are undertaken using firm-level data.

4.1 Industry-Level Overview of Fragmentation and Factor Intensity

As already shown in sections 2 and 3, Japan's trade patterns have undergone various changes over time: the share of trade with Asian countries in overall trade has increased markedly, and VIIT has come to account for a significant part of the trade with these countries. In this subsection, utilizing Japan's customs data and the JIP database, we investigate VIIT and outsourcing from foreign countries by industry, and analyze the impacts of these trends on shift in factor demand in Japan.

Figure 4.1 shows the share of VIIT, a broad outsourcing measure, and a narrow outsourcing measure by industry for the year 2000, while Figure 4.2 shows the average annual growth rates of these values from 1988 to 2000 by industry.¹⁷ Our measure of broad and narrow outsourcing is constructed following Feenstra and Hanson (1999). The broad outsourcing measure expresses imported intermediate inputs relative to total expenditure on non-energy intermediate inputs in each industry. The narrow outsourcing measure is expressed by the imported intermediate inputs purchased from the same JIP industry as the good being produced divided by the total expenditure on non-energy intermediate inputs in each industry. According to Figure 4.1, the level of the VIIT share in the year 2000 was relatively high (more than 30 percent) in publishing and printing, other chemicals, metal products, electrical machinery, other electrical machinery, and precision machinery

¹⁵ Sakurai (2000) conducts a similar analysis for Japan. See section 4.2 for the details.

¹⁶ As for capital-labor ratio, our analysis focuses on the period from 1988 to 1998 due to the data constraint.

¹⁷ VIIT is defined in section 3.1. For the definition of broad and narrow outsourcing measures, see Appendix B.

and equipment. On the other hand, the broad outsourcing measure was high (more than 15 percent) in food products (livestock products and processed marine products), apparel and accessories, lumber and wood products, leather and leather products, basic chemicals, chemical fibers, non-ferrous metals, other electrical machinery, and precision machinery and equipment. The narrow outsourcing measure was high (more than 5 percent) in food products (livestock products and processed marine products), lumber and wood products, pulp, paper, and paper products, leather and leather products, basic chemicals, petroleum products, steel manufacturing, non-ferrous metals, other electrical machinery, other transportation equipment, and precision machinery and equipment. Figure 4.2 shows that the VIIT share and outsourcing measures increased in most manufacturing sectors during the period from 1988-2000. In particular, we find that the outsourcing measures increased relatively more in food products, textile products, and machineries, while the VIIT share increased relatively more in food products, textile products, petroleum and coal products, non-ferrous metals and motor vehicles.

INSERT Figure 4.1 and Figure 4.2

Next, let us look at changes in factor intensities by industry. Figure 4.3 presents the annual growth rates of the shares of skilled workers, non-production workers, and VIIT by industry for the period from 1988 to 2000. Although the growth rates of the share of skilled and of non-production workers is small relative to that of the VIIT share, we can see a positive correlation between skilled/non-production workers' share and the VIIT share in many industries. Moreover, in Figure 4.4, we can also find a positive correlation between the growth rate of the capital-labor ratio and the growth rate of the VIIT share in most industries.

INSERT Figure 4.3 and Figure 4.4

4.2 Industry-Level Analysis

In this section, we conduct a statistical analysis of the determinants of factor intensities using the industry-level data from 1988 to 2000. Several previous studies have analyzed the impact of fragmentation on skill upgrading. Using detailed industry-level data for the U.S., Feenstra and Hanson (1996a, 1996b, 1999) estimate the effect of international outsourcing on wage inequality. Hijzen, Görg and Hine (2003) conduct a similar analysis using UK data for 53 manufacturing industries for the period 1982-1997. As for Japan, Sakurai (2000) analyzes this issue using data for 39 manufacturing industries for the period 1987-1990. Although the studies on the US and the UK found a strong positive relationship between outsourcing and wage inequality, Sakurai's (2000) study on Japan did not find such strong evidence. Sakurai explains that this ambiguous result might be due to the short estimation period. The present paper aims at applying and extending the Feenstra and Hanson approach by using JIP industry-level data (35 manufacturing industries) for the period

1988-2000. In addition, we take account of the role of skill-biased technological change (SBTC) in the increase in skilled/non-production worker intensity, utilizing the JIP IT (Information Technology) database.¹⁸ As Hijzen, Görg and Hine (2003) mention, the inclusion of the 1990s in the analysis is thought to be crucial as international fragmentation and information technology have rapidly progressed in the last decade. However, one drawback of our analysis is that we cannot calculate wage bills for skilled/non-production and unskilled/production workers due to data constraints. Therefore, we assume that the relative wage rates of skilled/non-production and unskilled/production workers have not changed over time and we use the ratio of the number of skilled/non-production workers' wage bill in the total number of workers as a proxy for the share of skilled/non-production workers' wage bill.

A translog cost function approach, which is based on the work of Berman, Bound and Griliches (1994) and Feenstra and Hanson (1996b), is usually employed in the literature to estimate skill upgrading. Following previous studies, capital is considered as a fixed input in the short-run, while skilled and unskilled (non-production and production) workers are variable factors of production. Therefore, the short-run translog cost function can be presented as:

$$\ln C_{i} = \alpha_{0} + \sum_{j=1}^{J} \alpha_{j} \ln w_{ij} + \sum_{k=1}^{K} \beta_{k} \ln x_{ik} + \frac{1}{2} \sum_{j=1}^{J} \sum_{s=1}^{J} \gamma_{js} \ln w_{ij} \ln w_{is} + \frac{1}{2} \sum_{k=1}^{K} \sum_{l=1}^{K} \delta_{kl} \ln x_{ik} \ln x_{il} + \sum_{j=1}^{J} \sum_{k=1}^{K} \varphi_{jk} \ln w_{ij} \ln x_{ik}$$

$$(4.1)$$

where C_i is the variable cost for industry *i*, w_{ij} denotes the wages of workers in skill group *j*, and x_{ik} denotes the fixed inputs or outputs *k*. Differentiating the translog cost function with respect to wages yields the factor payments to skill group *j* over the total wage bill.

$$S_{ij} = \alpha_j + \sum_{s=1}^{J} \gamma_{js} \ln w_{ij} + \sum_{k=1}^{K} \varphi_{jk} \ln x_{ik}$$
(4.2)

Assuming that quality-adjusted wages will be identical across industries, the wage terms can be dropped from the right-hand-side of the equation (4.2). We consider technological change, VIIT, and outsourcing as structural variables and assume there are three kinds of capital, i.e., IT hardware, IT software, and non-IT capital. A full set of year dummies is included in order to capture economy-wide skill upgrading as well as year-to-year changes in the wage levels faced by all

¹⁸ According to the argument by Feenstra and Hanson (1995), both skill-biased technological change and outsourcing are considered to be associated with within-industry changes in skill intensity as a result of their effect on the relative productivity of different skill groups. That is, as fragmentation or outsourcing take the form of moving unskilled labor-intensive processes from a developed country to a developing country, it has a similar effect as technological change.

industries. Therefore, we estimate the following equation:

$$S_{ijt} = \varphi_{j0} + \varphi_{j1} \ln(IThard / VA)_{it} + \varphi_{j2} \ln(ITsoft / VA)_{it} + \varphi_{j3} \ln(NonIT / VA)_{it} + \varphi_{j4} \ln VA_{it} + \varphi_{j5} (RD \exp/VA)_{it} + \varphi_{j6} VIIT_{it} + \varphi_{j7} Outsourcing_{it} + \varphi_{j8} D_{t} + v_{i} + \varepsilon_{it}$$

(4.3)

where *IThard*, *ITsoft*, and *NonIT* denote IT hardware stock, IT software stock, and non-IT capital stock, respectively, *VA* is value added in industry *i*, *RDexp/VA* is a proxy for technological change calculated as expenditure on research and development over value added, *VIIT* represents the VIIT value over industry *i*'s shipment, *Outsourcing* reflects either broad or narrow outsourcing, and *D* is a full set of year dummies. Subscript *t* represents time. In order to examine different effects of VIIT with Asian countries and VIIT with other countries, we prepare three variables representing VIIT: first, Japan's VIIT with all countries in the world divided by the industry's shipment; second, Japan's VIIT with nine Asian countries divided by the industry's shipment.¹⁹

The results of the GLS estimation are presented in Tables 4.1 and 4.2. Table 4.1 shows the results where skilled workers' share in the total number of workers (SKILLED) is used as the dependent variable. Table 4.2 shows the results where non-production workers' share in the total number of workers (NONPROD) is used as the dependent variable. Both in Tables 4.1 and 4.2, the estimated coefficients on ln(IThard/VA), ln (VA), and RDexp/VA are significantly positive in all cases. This implies that: 1) IT hardware intensity has a positive impact on skill upgrading and skill-biased technological change may have increased skilled/non-production workers' share; 2) the scale-effect is positive and greater value-added is associated with a higher skilled/non-production workers' share; and 3) R&D intensity which is a proxy for technological change, has a positive impact on skill upgrading. On the other hand, a significantly negative coefficient is estimated for ln(NonIT/VA) in all the cases but one (Tables 4.1 and 4.2), which suggests that increases in non-IT capital intensity favor unskilled/production workers in Japan. As for IT software intensity, the estimated coefficients are positive in Table 4.1 but negative in Table 4.2, though they are not statistically significant in any of the cases. As for the VIIT share, the estimated coefficients are significantly positive in Table 4.1 but statistically insignificant in Table 4.2, suggesting that VIIT raises the skill-intensity calculated as the share of workers whose occupation is classified as professional and technical or managerial and administrative. Moreover, looking at the magnitude of the coefficients in Table 4.1, VIITasia9/shipment has a much larger coefficient than VIITnon-asia9/Shipment. This implies that vertical FDI in the Asian countries seems to consist of the transfer of low-skill production work to

¹⁹ For more details on the definition of the variables and data sources, see Appendix B.

these countries while high-skilled employees remain at home. We can confirm that Japanese manufacturing industries realized skill upgrading as a result of the international division of labor with the nine Asian countries. When the skill-intensity is calculated as the share of non-production workers', however, VIIT does not have a significant impact on skill upgrading though the estimated coefficient on VIIT is positive in Table 4.2. This result might be a reflection of the fact that Japanese firms reduced the share of non-production and non-professional workers (such as sales persons) in the course of restructuring efforts during the 1990s. Although narrow outsourcing has a positive coefficient in all the cases in Tables 4.1 and 4.2, none of coefficients are significant. We could not find strong evidence that outsourcing from foreign countries contributed to skill upgrading in Japan, which is not consistent with the results of previous studies on the United States and the United Kingdom.

INSERT Table 4.1 and Table 4.2

Finally in this subsection, using the industry-level data, we examine whether the international division of labor contributed to physical capital deepening in Japan. We use the capital-labor ratio (physical capital stock divided by quality-adjusted labor inputs, *KLq*) as the dependent variable and regress it on the logarithm of the wage rate relative to the rental price of capital (*ln(wage/rental price)*)) and variables representing the international division of labor. As in the above analysis, we prepare five variables: *VIITworld/shipment*; *VIITasia9/shipment*; *VIITnon-asia/shipment*; *outsourcing (narrow)*; *outsourcing (difference)*. Although we present the results in Table 4.3, all these variables do not have statistically significant coefficients. This suggests that VIIT and outsourcing did not contribute to physical capital deepening in Japan, and that capital deepening was caused by other factors.

INSERT Table 4.3

4.3 Firm-Level Analysis

According to the industry-level analysis in the previous subsection, fragmentation of the vertical product differentiation-type (firms move the production of low-quality and unskilled labor-intensive products abroad and leave the production of high-quality and skilled labor-intensive products at home) positively affected the increase in skilled workers in Japan. In particular, this type of fragmentation with the Asian countries has had a strong impact on skill upgrading in Japan. However, outsourcing measures (imports of intermediate inputs) did not have a significant impact on either the share of skilled workers or the share of non-production workers. In this subsection, we report the results of a study by Fukao *et al.* (available in the METI database) which conducted a similar econometric analysis using firm-level data and investigated the determinants of firm-level

skill upgrading.^{20, 21}

Applying the same framework as we used in the previous subsection, they estimated the following equation using the firm-level data underlying the *Basic Survey of Japanese Business Structure and Activities* conducted annually by the Ministry of Economy, Trade and Industry (METI).

$$S_{jfit} = \varphi_{j0} + \varphi_{j1} \ln(K/VA)_{fit} + \varphi_{j2} \ln VA_{fit} + \varphi_{j3} (RD \exp/VA)_{fit} + \varphi_{j4} fragmentation_{jit} + \varphi_{j5} IND_{it} + \varphi_{j6} D_t + v_f + \varepsilon_{fit}$$

(4.4)

where S_{ifit} denotes the payments to skill group j over the total wage bill at firm f in industry i at time t. Since data on workers by skill group, IT capital stock, VIIT, and broad and narrow outsourcing measures are not available at the firm-level, they used some other variables as a proxy for the dependent variable and fragmentation variables. In the METI survey, they asked number of employees in each division of the firm (i.e., planning, information processing, research and development, international business, production, commerce and other divisions in the firm's head office, production establishment, sales establishment, research center, services and logistics centers, and overseas branches, and so on). Therefore, production workers are defined as those employees who belong to the production division in the head office or to a production establishment, and non-production workers are defined as all other employees. As in the industry-level analysis in the previous subsection, due to data constraints they assume that the relative wage rates of non-production and production workers have not changed over time. Therefore, the ratio of non-production workers to total workers is used as a proxy for the share of non-production workers' wage bill in the total wage bill. As for the physical capital stock variable (K), they compiled real capital stock data using a book value of fixed assets for the firm. VA denotes value added for the firm, but in fact the sales amount minus purchases is used as a proxy for value added. RDexp denotes R&D expenditures. IND is a full set of 2-digit-level industry dummies and D is a set of year

²⁰ The METI database was prepared and analyzed in cooperation with the Applied Research Institute, Inc. and the Research and Statistics Department of the Ministry of International Trade and Industry (MITI, the Ministry of Economy, Trade, and Industry, METI), and the Government of Japan. Kyoji Fukao, Keiko Ito, Fukunari Kimura, and Kozo Kiyota analyzed relationships between the global activities of Japanese firms and skill upgrading as a part of this research project. The opinions expressed in this paper, though, are those of the authors.

²¹ Using data on US multinational firms for 1977-1994, Slaughter (2000) analyzed the impact of overseas production on skill upgrading at home. However, he did not find significant relationship. On the other hand, Head and Ries (2002), using Japanese firm-level data for 1965-1990, found the transfer of production processes to lower-income countries contributed to the growth of non-production workers' wage share and of the average wage rate in Japan.

dummies. To represent fragmentation, they prepared following ten variables:²²

- imports divided by total purchases
- imports from Asian countries divided by total purchases
- imports from North American and European countries divided by total purchases
- overseas production workers divided by total number of workers (number of workers in Japan and number of workers in the firm's overseas manufacturing affiliates)
- production workers in manufacturing affiliates in Asia divided by total number of workers
- production workers in manufacturing affiliates in non-Asian countries divided by total number of workers
- overseas production workers divided by total number of production workers (number of workers in the manufacturing section in Japan and number of workers in the firm's overseas manufacturing affiliates)
- production workers in manufacturing affiliates in Asia divided by total number of production workers
- production workers in manufacturing affiliates in non-Asian countries divided by total number of production workers
- overseas subcontracting cost divided by total sales

The estimation results in the METI database are reported in Table 4.4. The estimated coefficients on capital intensity and value added are significantly negative. The negative coefficient on capital intensity here is consistent with the negative coefficient of non-IT capital intensity in the industry-level analysis (Table 4.2). This suggests that capital intensity favors production workers in Japan. Although this result is consistent with Head and Ries's (2002) study on Japanese firms for 1965-1990, it contradicts widespread results on the US and the UK that show that physical capital and skill are complementary.²³ Although the negative scale effect is consistent with the result of Head and Ries (2002), it contrasts with our industry-level result in the previous subsection. Head and Ries explain that firms need not increase skill-intensive knowledge capital as output increases. However, the contrasting results of our firm-level and industry-level analyses may point to the existence of some kind of spillover effect. As for the fragmentation variables, all the estimated coefficients are positive but many of them are not statistically significant. The ratio of imports to total purchases has a slightly significant coefficients only when the total number of production

²² For more details on the variables, see Appendix B.

²³ See, for example, Feenstra and Hanson (1996a, 1996b, 1999) for US industry-level results, Slaughter (2000) for US firm-level results, and Hijzen, Görg and Hine (2003) for UK industry-level results.

workers is used as a denominator. In general, although statistically strong evidence is not obtained, the result of the firm-level analysis implies some positive relationship between fragmentation by Japanese firms and skill upgrading at home. However, we should note that the employment data for overseas affiliates of Japanese firms in the METI survey suffers from many shortcomings, and a more rigorous analysis is encouraged.²⁴

INSERT Table 4.4

5. Conclusions

Our goal in this paper has been to investigate the deepening of the international division of labor and its effect on factor intensities in Japan, mainly focusing on the manufacturing sector. In the first half of the paper, we analyzed factor contents of trade and found that Japan's factor content net-exports of capital and non-production labor grew rapidly while net-exports of production workers fell by a large amount. Interestingly, the decline in the factor content of net-exports of production workers was almost entirely caused by Japan's trade with China and Hong Kong.

However, we found that the macro-level accumulation of physical and human capital was much faster than the growth of factor content net-exports of physical capital and non-production labor. According to our decomposition analyses, most of the macro-economic change in the capital-labor ratio and the change in the skilled-labor ratio were attributable to a "within-industry" shift rather than a "between-industry" shift. These observed facts reminded us of the idea that vertical fragmentation of production between Japan and Asian countries may have contributed to the within-industry increase in capital intensity and skilled-labor intensity.

Although we clearly saw a drastic increase in VIIT and outsourcing to foreign countries, particularly to Asian countries, our empirical analysis provided only weak evidence that the deepening international division of labor contributed to the change in factor intensities in Japan. We did not find any significant relationship between fragmentation and capital-labor ratios. As for skill-intensity, we found that VIIT had a strong positive effect on the increase in the share of skilled workers when these were defined as those holding professional and technical or managerial and administrative occupations. However, we did not find such a relationship when the skill-intensity was calculated as the share of non-production workers. We should note that the skilled (professional, technical, managerial, and administrative) labor share in the total number of workers is only around 10% and is much lower than the share of non-production labors which is around 30%. Moreover, although the firm-level econometric analysis showed some positive relationship between fragmentation and the share of non-production workers, the result was not very robust.

 $^{^{24}}$ Only the METI 1994 survey asks for the number of workers employed by the firm's overseas affiliates, but the survey for other years do not ask this question. Therefore, Fukao *et al.* estimate employment by the firm's overseas manufacturing affiliates. See Appendix B for details.

According to our results, specialization in the export of skilled-labor-intensive products may have contributed to the increase in the relative demand for skilled (professional, technical, managerial, and administrative) labor within industry. However at the same time, our results could also imply that changes in trade patterns (specialization in capital-intensive production) did not offset the excess supply of capital in Japan. That is, Japan is not adequately specializing in the export of capital-intensive goods despite the fact that the price of capital is low and capital is abundant. Therefore, VIIT patterns might not be determined by the price of capital, but by other factors: endowments with skilled labor, the agglomeration of industries, highly-developed supporting industries, and so on. This is an issue that deserves closer scrutiny in future investigations. Appendix A. Detail of Japan's Trade of Electrical Machinery with China: Most Important 10 Commodities, 2000

INSERT Appendix Table A

Appendix B. Definition of Variables Used in the Econometric Analysis and Data Sources

1. Labor data

Data on skilled and unskilled labor were constructed mainly using the Population Survey of Japan. The Population Survey is the most fundamental and reliable survey and is conducted every five years, covering all permanent and temporary residents in Japan. The survey report provides data on employment by detailed occupational classification (3-digit-level) and by industry. We used the 1980, 1985, 1990, and 1995 employment data as benchmarks and interpolated the data for years between the benchmarks. As for the years after 1995, we utilized the Employment Survey data because results of the 2000 Population Survey have not been released yet. The Employment Survey is based on a series of surveys that cover approximately one percent of the working population. We first calculated the skilled labor share for 1992, 1997, and 2002 based on the Employment Survey. Then, for the 1996 and 1997 data on skilled labor, we extended the 1995 employment data by occupation and industry using the growth rate of the skilled labor share from 1992 to 1997. For the 1998, 1999 and 2000 data, we extended the 1997 data using the growth rate of the skilled labor share from 1997 to 2002. The Population Survey and the Employment Survey allow us to construct a more accurate measure of skill than the one based on production and non-production labor generally used in the previous literature. In the Population Survey and the Employment Survey, workers are basically classified according to 10 Major Groups as shown in Appendix Table B1. We distinguished two skill groups (skilled or unskilled) as well as production/non-production classifications. Skilled workers are those classified in Major Groups 1 (Professional and Technical Occupations) and 2 (Managers and Administrators). Otherwise, workers are classified as unskilled. Moreover, production workers are those classified in Major Group 9 (Plant and Machine Occupations, Craft and Related Occupations, and Occupations in Mining and Construction). Workers classified in all the other Major Groups are categorized as non-production workers.

INSERT Appendix Table B1

2. Outsourcing measures

Following Feenstra and Hanson (1999) and other previous studies, we constructed outsourcing measures as follows:

For each industry *i*, we measure imported intermediate inputs as

 Σ_{j} [input purchases of good *j* by industry *i*]*[(imports of good *j*)/(consumption of good *j*)]

(A.B.1)

where consumption of good j is measured as (shipments + imports - exports). The *broad* measure of foreign outsourcing is obtained by dividing imported intermediate inputs by total expenditure on non-energy intermediates in each industry. The *narrow* measure of outsourcing is obtained by

restricting attention to those inputs that are purchased from the same JIP industry as the good being produced. Using Japan's customs data, Hiromi Nosaka, Tomohiko Inui, Keiko Ito, and Kyoji Fukao compiled trade data at the basic industry classification of the I-O tables in 1990 price as part of the Japan Industrial Productivity (JIP) database project at the Economic and Social Research Institute, Cabinet Office, Government of Japan. The correspondence between the Fukao-Ito industry classification and the 1980-85-90 Japan Linked Input-Output standard classification for manufacturing industries is presented in Appendix Table B2. The correspondence between the JIP classification and the Fukao-Ito classification for manufacturing industries is presented the outsourcing measures, we first calculated the input coefficients by Fukao-Ito industry and aggregated the imported intermediate inputs in each Fukao-Ito industry into the corresponding JIP industry. As for the narrow outsourcing measure, we restricted the Fukao-Ito industry into the same JIP industry. We should note that we only took account of intermediate inputs from manufacturing industries.

INSERT Appendix Tables B2 and B3

3. Other variables used in the industry-level econometric analyses

IT hardware (million yen, 1990 prices)

We mainly used IT hardware stock data in the JIP database. For details on the JIP database, see Fukao, Inui, Kawai, and Miyagawa (2003). Tangible IT assets (hardware) include office machines, computers, computer peripherals, communications equipment, optical instruments and medical instruments. As only the data until 1998 are available in the JIP database, we extended the IT hardware stock until 2000 by using the annual growth rate of real IT hardware stock from 1998 to 2000 in JCER (Japan Center for Economic Research) IT data.²⁵

IT software (million yen, 1990 prices)

We constructed industry-level software stock data using the JIP database, the JCER IT data, and software investment data underlying Motohashi (2002) and Jorgenson and Motohashi (2003).²⁶ The JCER data provide real software stock by 2-digit industry but include only order-made software. In the JIP database, real software stock data which cover in-house software and general application software as well as order-made software are available until 1999. Therefore, we first divided the JIP software stock value at the macro-level into each 2-digit industry using the distribution ratios in the JCER IT data. Then, we further divided it into the JIP industry classification, using the distribution ratios of IT hardware by JIP industry. Since the JIP software stock data are only available until 1999, we calculated the macro-level real software stock, using Motohashi's software investment data and

²⁵ We wish to thank Professor Tsutomu Miyagawa at Gakushuin University and Ms. Yukiko Ito at the Japan Center for Economic Research for providing the JCER IT data.

²⁶ We are also grateful to Dr. Kazuyuki Motohashi at Hitotsubashi University for providing the data.

software deflators.

Non-IT physical capital stock (million yen, 1990 prices)

Physical capital stock data including IT hardware stock by industry are available in the JIP database until 1998. We extended the data up to 2000 by using investment data in METI's *Report on Industry Statistics*, which is based on the *Census of Manufactures*. First, we aggregated the data on investment in fixed assets in the *Report on Industry Statistics* into the JIP industry-level, then deflated them using the gross domestic capital formation deflator (plant and equipment) in the *Annual Report on National Accounts* released by the Cabinet Office, Government of Japan. We assumed a depreciation rate of 10 percent and estimated the real physical capital stock for 1999 and 2000. Non-IT physical stock is defined as physical capital stock minus IT hardware stock.

Value added (million yen, 1990 prices)

We used value added data in the JIP database up to 1998. The data for 1999 and 2000 were constructed using the *SNA Input-Output Tables* released by the Cabinet Office, Government of Japan.

R&D expenditure (million yen, 1990 prices)

We used R&D expenditure data in the JIP database up to 1998. We extended the data up to 2000 using the *Report on the Survey of Research and Development*, Ministry of Public Management, Home Affairs, Posts and Telecommunications. The deflators were taken from the *Annual Report on the Promotion of Science and Technology*, Ministry of Education, Science, Sports and Culture. **VIIT (%)**

The variable VIIT is defined as the share of vertical intra-industry trade in total trade values. For our definition of vertical intra-industry trade and data sources, see section 3.

VIITworld/Shipment (%)

This variable is calculated as (VIIT*(exports+imports)/2/domestic shipment). *VIITworld* takes account of Japan's trade with all countries in the world. Data on domestic shipments were taken from the JIP database up to 1998 and from the *SNA Input-Output Tables* for 1999 and 2000.

VIITasia9/Shipment (%)

This variable is calculated in the same way as *VIITworld/Shipment*. *VIITasia9* takes account of Japan's trade with the following nine Asian countries: China, Korea, Taiwan, Hong Kong, Singapore, Indonesia, Malaysia, the Philippines, and Thailand.

VIITnon-asia/Shipment (%)

This variable is calculated in the same way as *VIITworld/Shipment*. *VIITnon-asia* takes account of Japan's trade with all countries other than the nine Asian countries.

KLq (million yen per man-hour, 1990 prices)

The capital-labor ratio was calculated using physical capital stock data and quality-adjusted labor input data taken from the JIP database for 1988-1998.

Wage (1990=1.0)

The labor quality-adjusted wage index was taken from the JIP database for 1988-1998. **Rental price (1990=1.0)**

The rental price index of capital was taken from the JIP database for 1988-1998.

4. Variables used in the firm-level econometric analyses

Real capital stock (K, 1995 prices)

Real capital stock data are constructed utilizing each firm's book values of fixed assets for 1995 as a benchmark as follows: when K_{ft} denotes the book values of fixed assets of firm *f* at year *t*, the estimated value of real capital stock, \tilde{K}_{ft} , can be calculated using the following equations:

$$\begin{split} \widetilde{K}_{ft+1} &= \widetilde{K}_{ft} + \left(K_{ft+1} - K_{ft}\right) / p_{It} \qquad (\text{ if } K_{ft+I} - K_{ft} > 0) \\ \widetilde{K}_{ft+1} &= \widetilde{K}_{ft} + \left(K_{ft+1} - K_{ft}\right) \qquad (\text{ if } K_{ft+I} - K_{ft} \leq 0) \end{split}$$

where p_{lt} denotes the investment price deflator. The wholesale price index (investment goods) published by the Bank of Japan is used as a deflator.

Value added (VA, 1995 prices)

Value added is proxied by sales minus purchases. Sales and purchases are deflated using the input-output price index of manufacturing industry by sector published by the Bank of Japan.

R&D Expenditure (million yen, 1990 prices)

The deflators were taken from the *Annual Report on the Promotion of Science and Technology*, Ministry of Education, Science, Sports and Culture.

Employment by overseas manufacturing affiliates

Since data on the number of workers employed by overseas manufacturing affiliates are available only in the 1994 survey, the data for 1995-1998 are estimated using the following equations.

Employment by manufacturing affiliates (majority-owned) in Asia in year t

= (Employment by manufacturing affiliates (majority-owned) in Asia in 1994)

× (total number of majority-owned manufacturing affiliates in Asia in year *t*) / (total number of majority-owned manufacturing affiliates in Asia in 1994)

Employment by manufacturing affiliates (majority-owned) in non-Asian countries in year t

= (Employment by manufacturing affiliates (majority-owned) in non-Asian countries in year t) × (total number of majority-owned manufacturing affiliates in non-Asian countries in year t) / (total number of majority-owned manufacturing affiliates in Asia in 1994)

References

- Berman, Eli, John Bound, and Zvi Griliches (1994) "Changes in the Demand for Skilled Labor within U.S. Manufacturing: Evidence from the Annual Survey of Manufactures," *Quarterly Journal of Economics*, Vol. 109, pp. 367-98.
- Campa, Jose and Linda S. Goldberg (1997) "The Evolving External Orientation of Manufacturing: A Profile of Four Countries," *Economic Policy Review*, Volume 3, Number 2, pp. 53-81.
- Falvey, Rodney E. (1981) "Commercial Policy and Intra-Industry Trade," *Journal of International Economics*, 11, pp. 495-511.
- Feenstra, Robert C. and Gordon H. Hanson (1996a) "Foreign Investment, Outsourcing, and Relative Wages," in Robert C. Feenstra, Gene M. Grossman, and Douglas A. Irwin, eds., *The Political Economy of Trade Policy*, pp. 89-127, Cambridge, Mass. and London: The MIT Press.
- Feenstra, Robert C. and Gordon H. Hanson (1996b) "Globalization, Outsourcing, and Wage Inequality," *American Economic Review*, Vol. 86, pp. 240-245.
- Feenstra, Robert C. and Gordon H. Hanson (1999) "The Impact of Outsourcing and High-Technology Capital on Wages: Estimates for the United States, 1979-1990," *The Quarterly Journal of Economics*, Vol. 114, Issue 3, pp. 907-940.
- Feenstra, Robert C. and Gordon H. Hanson (2000) "Aggregation Bias in the Factor Content of Trade: Evidence from U.S. Manufacturing," AEA Papers and Proceedings, vol. 90, no. 2, pp. 155-160..
- Feenstra, Robert C. and Gordon H. Hanson (2001) "Global Production Sharing and Rising Inequality: A Survey of Trade and Wages," NBER Working Paper No. 8372, July, National Bureau of Economic Research.
- Fontagné, Lionel, Michael Freudenberg, and Nicholas Péridy (1997) "Trade Patterns Inside the Single Market," *CEPII Working Paper No. 1997-07*, April, Centre D'Etudes Prospectives et D'Informations Internationales.
- Fukao, Kyoji, Tomohiko Inui, Hiroki Kawai, and Tsutomu Miyagawa (2003) "Sectoral Productivity and Economic Growth in Japan, 1970-98: An Empirical Analysis Based on the JIP Database," forthcoming in Takatoshi Ito and Andrew Rose, eds., *Productivity and Growth, East Asia Seminar on Economics Volume 13*, The University of Chicago Press.
- Fukao, Kyoji, Hikari Ishido, and Keiko Ito (2003) "Vertical Intra-Industry Trade and Foreign Direct Investment in East Asia," forthcoming in *Journal of the Japanese and International Economies*, December 2003.
- Fukao, Kyoji and TangjunYuan (2001) "Kohyo Deta no Peneruka to Naigaiso niyoru Kaigai Jigyo Katsudo Kihon-Doko Chosa no Boshudan Shuikei: 1985-1998 (Estimation of Business Activities by All the Foreign Affiliates of Japanese Firms based on Micro-panel-data of

METI Survey: 1985-1998)," Kaigai Jigyo Katsudo Doko Chosa, Gaishikei Kigyo Katsudo no Doko Data nado ni Motozuku Bunseki Kenkyu (*Studies based on METI Survey on Foreign Affiliates of Japanese Firms and Survey on Japanese Affiliates of Foreign Firms*), edited by Institute for International Trade and Investment, Tokyo, Japan.

- Genda, Yuji (1997) "Japan: Wage Differentials and Changes since the 1980s," in Toshiaki Tachibanali ed. Wage Differentials: An Intrenational Comparison, Macmillan Press: London.
- Godo, Yoshihisa (2001) "Estimation of Average Years of Schooling by Levels of Education for Japan and the United States, 1890-1990," *mimeo*, Tokyo: FASID.
- Head, Keith and John Ries (2002) "Offshore Production and Skill Upgrading by Japanese Manufacturing Firms," *Journal of International Economics*, Vol. 58, pp. 81-105.
- Hijzen, Alexander, Holger Görg and Robert C. Hine (2003) "International Fragmentation and Relative Wages in the UK," *IZA Discussion Paper Series No. 717*, February, Bonn: Institute for the Study of Labor (available at <u>www.iza.org</u>).
- Jorgenson, Dale W. and Kazuyuki Motohashi (2003) "Economic Growth of Japan and the United States in the Information Age," RIETI Discussion Paper Series 03-E-015, Tokyo: Research Institute of Economy, Trade and Industry.
- Jorgenson, Dale W., Mun S. Ho, and Kevin J. Stiroh (2002) "Growth in U.S. Industries and Investments in Information Technology and Higher Education," paper prepared for NBER/CRIW Conference on Measurement of Capital in the New Economy, April 2002.
- Katz, Lawrence F., and Ana L. Revenga (1989) "Changes in the Structure of Wages: The United States vs. Japan," *Journal of the Japanese and International Economies*, vol. 3, pp. 522-553.
- Kimura, Fukunari (2001) "Fragmentation, Internalization, and Inter-firm Linkages: Evidence from the Micro Data of Japanese Manufacturing Firms," in Leonard K. Cheng and Henryk Kiezkowski, eds., *Global Production and Trade in East Asia*, Norwell: Kluwer Academic Publishers.
- Kimura, Fukunari and Kiichiro Fukasaku (2002) "Globalization and Intra-firm Trade: Further Evidence," in Peter Lloyd and Hyun Hoon Lee, eds., Frontiers of Research in Intra-industry Trade, New York: Palgrave Macmillan.
- METI (Ministry of Economy, Trade and Industry, Japan) (2001) Kaigai Jigyo Katsudo Kihon Chosa (Basic Survey of Overseas Business Activities), Tokyo: METI.
- MITI (Ministry of International Trade and Industry, Government of Japan) (1999) *Keizai Hakusho* (White Paper on International Trade), Tokyo: MITI.
- Motohashi, Kazuyuki (2002) "IT Investment and Productivity Growth of Japanese Economy and Comparison to the United States," RIETI Discussion Paper Series 02-J-018, Tokyo:

Research Institute of Economy, Trade and Industry (in Japanese).

- Pyo, Hak K., and Kwang-Hee Nam (1999) "A Test of the Convergence Hypothesis by Rates of Return to Capital: Evidence from OECD Countries," *mimeo*, Seoul National University.
- Sachs, J. D., and H. J. Shatz (1994) "Trade and Jobs in U.S. Manufacturing," *Brookings Papers on Economic Activities*, vol. 19, pp. 1-84.
- Sakurai, Kojiro (2000) "Gurobaru-ka to Rodo Shijo: Nihon no Seizogyo no Keisu (Globalization and Labor Market: The Case of Japanese Manufacturing)," *Keizai Keiei Kenkyu* [Economics Today], Vol.21-2, November, Tokyo: Research Institute of Capital Formation, Development Bank of Japan.
- Sakurai, Kojiro (2001) "How Does Trade Affect the Labor Market? Evidence from Japanese Manufacturing," paper presented at the Semi-annual Conference of the Japan Economic Association, October 7-8th, 2001, Hitotsubashi University.

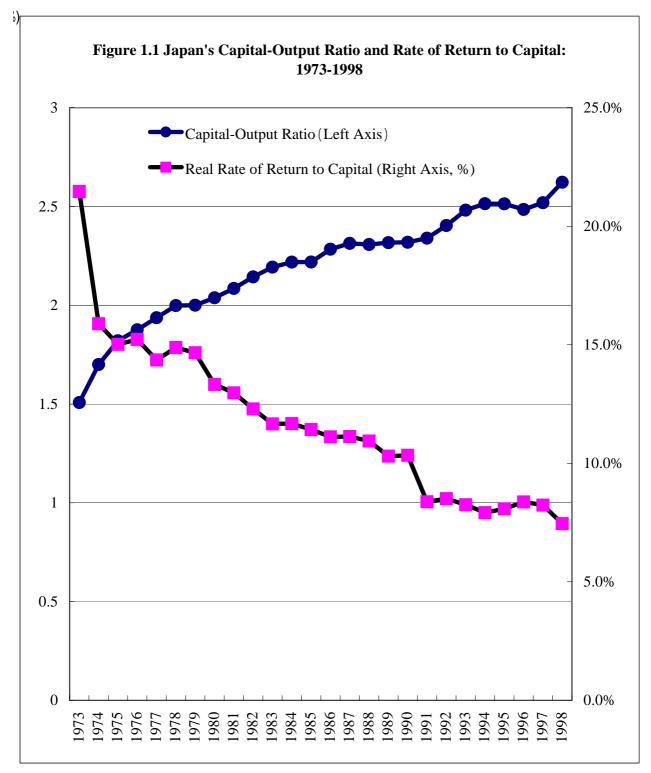
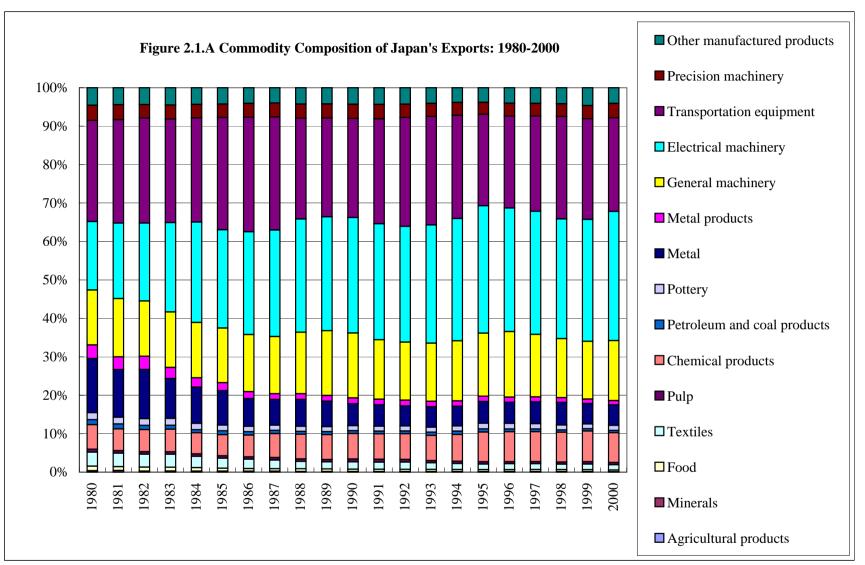

]	Table 1.1 Panel	ble 1.1 Panel A. The Result of Growth Accounting for the US Economy by Jorgenson et al (2002): 1973-2000					(Annual Rate, %)		
		Real GDP Man-hour Growth growth		Labor productivity (GDP/man- hour) growth	Contribution of labor quality TFP growth growth		Contribution of capital sevices/man-hour growth Sub-total		
ŀ		а	b	c=a-b	d=c-e-f	e	f=g+h	IT capital g	non-IT capital h
	1973-1995	2.78%	1.44%	1.33%	0.26%	0.27%	0.80%	0.37%	0.43%
	1995-2000	4.07%	1.99%	2.07%	0.62%	0.21%	1.24%	0.87%	0.37%

Table. 1.1 Sources of Economic Growth: US-Japan Comparison

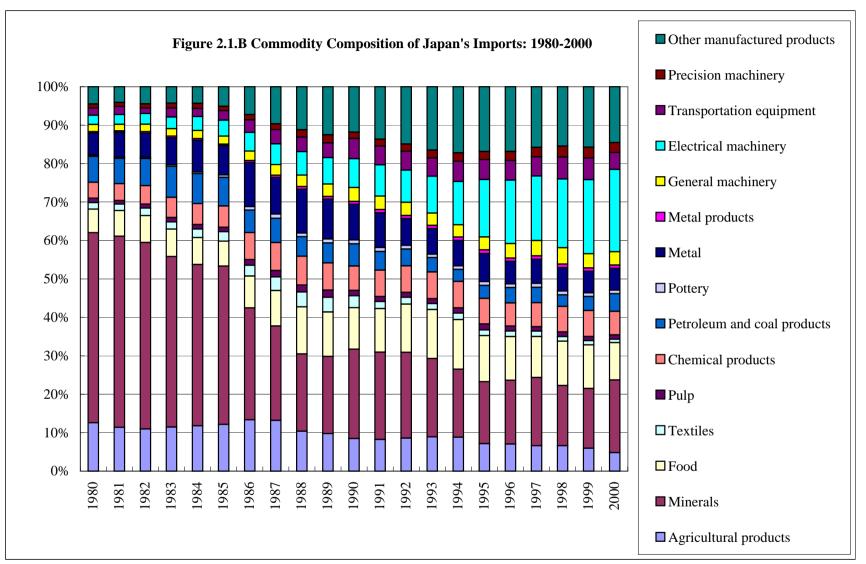
Jorgenson et al. (2002)

	Real GDP Growth	Labor productivity Man-hour (GDP/man- growth hour) growth		TFP growth	Contribution of labor quality growth	Contribution of capital services/man-hour growth		
						Sub-total	Contribution of IT capital	Contribution of non-IT capital
	а	b	c=a-b	d=c-e-f	e	f=g+h	g	h
1973-83	3.56%	1.53%	2.03%	-0.30%	0.65%	1.68%	0.16%	1.52%
1983-91	3.94%	1.79%	2.15%	0.40%	0.46%	1.29%	0.37%	0.92%
1991-98	1.25%	-0.08%	1.34%	0.03%	0.21%	1.10%	0.33%	0.769
						1995-98	0.52%	0.639

Calculated from JIP database.


The numerator of the rate of return to capital is current surplus of national accounts deflated by the GDP deflator. Source: JIP Database

	Imports of goods and services/GDP	Imports of manufactured products (CIF)/GDP	Imports of services/GDP	Share of manufacturing sector in total GDP	Share of manufacturing sector in total employed persons	Imports of manufactured products (CIF)/gross value added by manufacturing sectoir
1980	15.1%	5.1%	1.7%	29.2%	26.2%	17.4%
1985	11.3%	4.5%	1.6%	29.5%	26.5%	15.2%
1990	9.4%	5.3%	1.6%	28.2%	26.2%	18.7%
1995	7.8%	5.0%	1.3%	24.7%	24.7%	20.3%
2000	9.5%	6.3%	1.3%	23.4%	22.3%	26.7%


Table 2.1 Japan's Dependence on Imports and Share of Manufacturing Sector

Sources: Economic and Social Research Institute, Cabinet Office, Government of Japan, *Annual Report on National Accounts 2002*, Economic Planning Agency, Government of Japan, *Annual Report on National Accounts 2000*.

Notes: Official SNA statistics for year 2000 are based on 1993 SNA. For years before 1989, only the statistics based on 1968 SNA are available. In order to make long-term comparisons we derived values for 2000 by an extrapolation based on values of 1995 and the 1995-2000 growth rate of each variable reported in SNA statistics based on 1993 SNA.

Sources: Economic and Social Research Institute, Cabinet Office, Government of Japan, Annual Report on National Accounts 2002, Economic Planning Agency, Government of Japan, Annual Report on National Accounts 2000.

Sources: Economic and Social Research Institute, Cabinet Office, Government of Japan, Annual Report on National Accounts 2002, Economic Planning Agency, Government of Japan, Annual Report on National Accounts 2000.

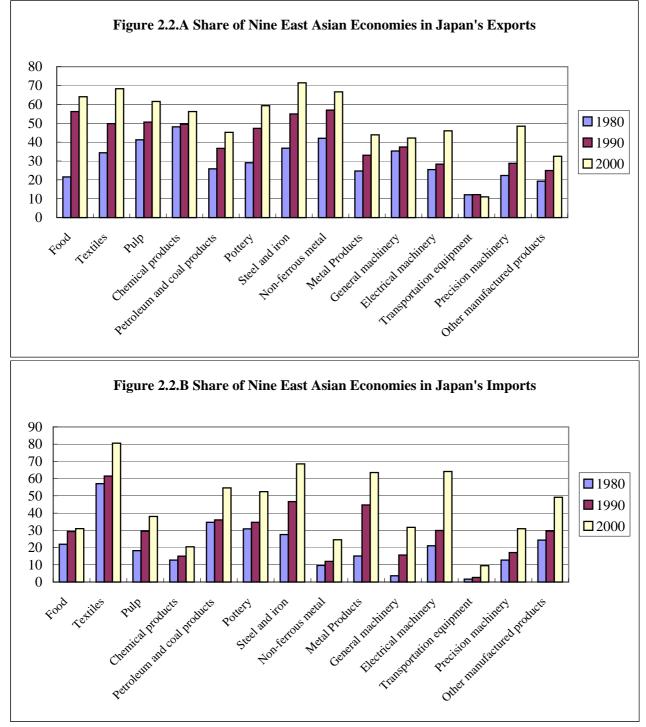


Figure 2.2 Share of Nine East Asian Economies in Japan's Trade in Manufacturing Products: 1980-2000, By Commodity

Source: Ministry of Finance, Trade Statistics

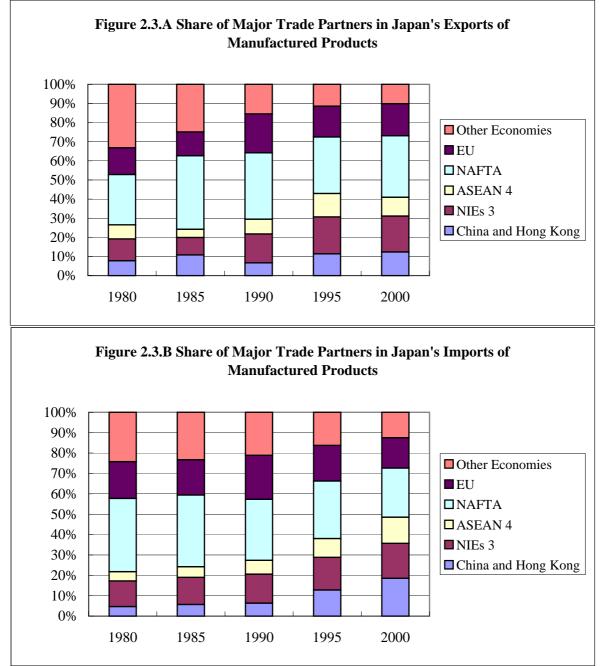


Figure 2.3 Japan's Major Trade Partners: Manufacturing Products, 1980-2000

Source: Ministry of Finance, Trade Statistics

			(billion yen)
Commodity classification, SITC R3	Japan's exports to China and Hong Kong (f.o.b. base)	Japan's imports from China and Hong Kong (f.o.b. base)	Japan's net- exports to China and Hong Kong
75-Office machines & automatic data processing	275.3	231.0	44.2
751-Office machines	173.5	117.2	56.3
752-Automatic data processing machines & units	59.0	83.7	-24.8
759-Parts of and accessories suitable for 751-752	42.8	30.1	12.7
76-Telecommunications & sound recording appar	316.7	302.5	14.1
761-Television receivers	37.5	39.5	-2.1
762-Radio-broadcast receivers	6.8	41.2	-34.4
763-Gramophones, dictating, sound recorders etc	n.a.	n.a.	n.a.
764-Telecommunications equipment and parts	272.4	221.8	50.6
77-Electrical machinery, apparatus & appliance	1377.9	454.2	923.7
771-Electric power machinery and parts thereof	65.7	122.7	-57.0
772-Elect.app.such as switches,relays,fuses,pl	235.2	65.9	169.4
773-Equipment for distributing electricity	48.7	63.9	-15.2
774-Electric apparatus for medical purposes	12.9	1.2	11.7
775-Household type,elect.& non-electrical equi	14.1	52.3	- 38.3
776-Thermionic,cold & photo-cathode valves,tub	724.0	85.7	638.3
778-Electrical machinery and apparatus, n.e.s.	277.3	62.6	214.8
Total	1969.8	987.7	982.1

Table 2.2 Japan's Trade in Electrical Machinery and Office Machines with China and Hong Kong in 1999

Source: Statistics Canada, World Trade Analyzer 2001.

Table 2.3 Factor Contents (Direct plus Indirect) of Trade for Japan's Manufacturing Sector: 1980-2000, by Region

Production labor	(Gross exports		0	Gross imports	3		Net exports	
	1980	1990	2000	1980	1990	2000	1980	1990	2000
World total	923,474	1,388,633	1,941,421	306,751	761,507	1,578,368	616,723	627,125	363,053
China and Hong Kong	73,317	97,278	242,423	22,976	87,209	513,402	50,341	10,070	-270,979
NIEs 3	99,132	198,831	353,213	54,302	138,387	218,617	44,830	60,444	134,596
ASEAN 4	61,937	103,502	189,007	10,060	51,945	177,053	51,877	51,557	11,953
US	223,380	440,972	583,364	90,578	178,069	273,127	132,801	262,903	310,237
EU	133,426	286,382	324,457	61,872	174,314	208,738	71,554	112,068	115,719
Other economies	332,281	261,667	248,957	66,963	131,583	187,430	265,318	130,084	61,527
Non-production labor	(Gross exports	1	C	Gross imports	3		Net exports	
•	1980	1990	2000	1980	1990	2000	1980	1990	2000
World total	408,313	675,630	985,796	118,829	291,902	607,572	289,484	383,728	378,224
China and Hong Kong	31,756	44,161	119,781	5,861	21,364	127,705	25,895	22,797	-7,924
NIEs 3	46,089	100,185	186,061	15,805	44,569	106,804	30,285	55,617	79,257
ASEAN 4	28,616	50,583	96,495	3,679	16,693	79,591	24,937	33,890	16,904
US	96,813	215,813	294,537	42,276	87,408	136,926	54,537	128,405	157,610
EU	60,203	141,939	169,484	26,359	70,748	90,007	33,844	71,191	79,477
Other economies	144,836	122,948	119,439	24,850	51,119	66,540	119,986	71,829	52,900
Land (million yen, in	(Gross exports	;	G	Gross imports	6		Net exports	
1990 prices)	1980	1990	2000	1980	1990	2000	1980	1990	2000
World total	2,367,285	3,154,935	4,251,546	782,374	1,777,449	2,895,281	1,584,911	1,377,486	1,356,265
China and Hong Kong	202,601	223,700	557,028	39,703	128,046	621,391	162,899	95,654	-64,362
NIEs 3	282,507	502,354	807,407	107,479	275,660	437,886	175,028	226,694	369,521
ASEAN 4	183,807	271,144	428,155	34,754	124,603	337,695	149,052	146,541	90,460
US	522,355	931,945	1,195,965	228,689	418,488	565,778	293,666	513,457	630,186
EU	297,871	591,223	655,089	149,588	397,799	457,527	148,284	193,424	197,562
Other economies	878,144	634,570	607,902	222,161	432,854	475,004	655,982	201,716	132,898
Capital stock (million		Gross exports		G	Gross imports			Net exports	
yen, in 1990 prices)	1980	1990	2000	1980	1990	2000	1980	1990	2000
World total	11,087,602	15,378,504	21,701,611	3,068,328	7,169,480	12,586,585	8,019,274	8,209,024	9,115,026
China and Hong Kong	944,937	1,111,021	2,901,756	145,135	469,155	2,313,326	799,802	641,866	588,430
NIEs 3	1,327,911	2,442,986	4,195,098	403,842	1,113,916	2,263,765	924,069	1,329,070	1,931,333
ASEAN 4	878,622	1,312,625	2,286,969	114,037	401,754	1,552,102	764,585	910,871	734,867
US	2,479,216	4,629,732	6,052,100	975,571	1,879,475	2,710,964	1,503,645	2,750,257	3,341,137
EU	1,372,409	2,903,521	3,353,937	629,500	1,691,120	2,012,755	742,909	1,212,401	1,341,182
Other economies	4,084,507	2,978,619	2,911,750	800,244	1,614,061	1,733,673	3,284,263	1,364,559	1,178,077

		Net exports	
	1980-90	1990-2000	1980-2000
World total	10,403 (0.1%)		-253,670 (-3.3%)
China and Hong Kon	-40,272 (-0.5%)	-281,049 (-3.6%)	-321,321 (-4.2%)
NIEs 3	15,614 (0.2%)	74,152 (1.0%)	89,766 (1.2%)
ASEAN 4	-320 (-0.0%)	-39,603 (-0.5%)	-39,924 (-0.5%)
US	130,101 (1.7%)	47,335 (0.6%)	177,436 (2.3%)
EU	40,513 (0.5%)	3,651 (0.0%)	44,164 (0.6%)
Other economies	-135,234 (-1.8%)	-68,557 (-0.9%)	-203,792 (-2.6%)
Non-production labor			
		Net exports	
	1980-90	1990-2000	1980-2000
World total	94,244 (2.7%)		88,739 (2.6%)
China and Hong Kon	-3,098 (-0.1%)		-33,819 (-1.0%)
NIEs 3	25,332 (0.7%)		48,973 (1.4%)
ASEAN 4	8,953 (0.3%)		-8,033 (-0.2%)
US	73,868 (2.1%)		103,073 (3.0%)
EU	37,347 (1.1%)		45,632 (1.3%)
Other economies	-48,157 (-1.4%)		-67,087 (-1.9%)
Land (million yon, in 1000			
Land (million yen, in 1990	prices)	Net exports	
	1980-90	1990-2000	1980-2000
World total	-207,425 (-1.6%)		-228,646 (-1.8%)
China and Hong Kon	-67,244 (-0.5%)		-227,261 (-1.8%)
NIEs 3	51,666 (0.4%)		194,492 (1.5%)
ASEAN 4	-2,512 (-0.0%)		-58,592 (-0.5%)
US	219,791 (1.7%)		336,521 (2.6%)

Table 2.4 Changes in Factor Contents (Direct plus Indirect) of Net Exports for Japan's Manufacturing Sector: 1980-2000, by Region Production labor

Capital stock (million yen, in 1990 prices)

45,140

-454,267

EU

Other economies

		Net exports				
	1980-9	90	1990-20	000	1980-20	000
World total	189,751	(0.3%)	906,001	(1.6%)	1,095,752	(2.0%)
China and Hong Kon	-157,936	(-0.3%)	-53,436	(-0.1%)	-211,372	(-0.4%)
NIEs 3	405,001	(0.7%)	602,262	(1.1%)	1,007,263	(1.8%)
ASEAN 4	146,286	(0.3%)	-176,004	(-0.3%)	-29,718	(-0.1%)
US	1,246,611	(2.2%)	590,880	(1.1%)	1,837,492	(3.3%)
EU	469,492	(0.8%)	128,781	(0.2%)	598,273	(1.1%)
Other economies	-1,919,705	(-3.5%)	-186,482	(-0.3%)	-2,106,186	(-3.8%)

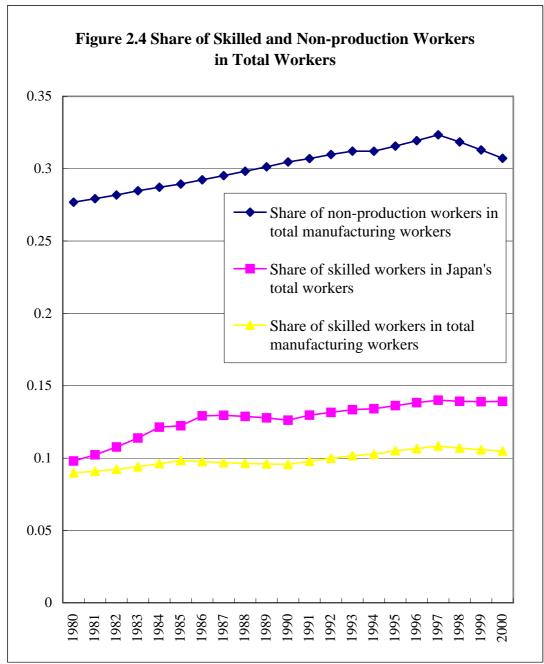
(0.3%)

(-3.5%)

(0.0%)

4,138

-68,818 (-0.5%)


(0.4%)

(-4.1%)

49,278

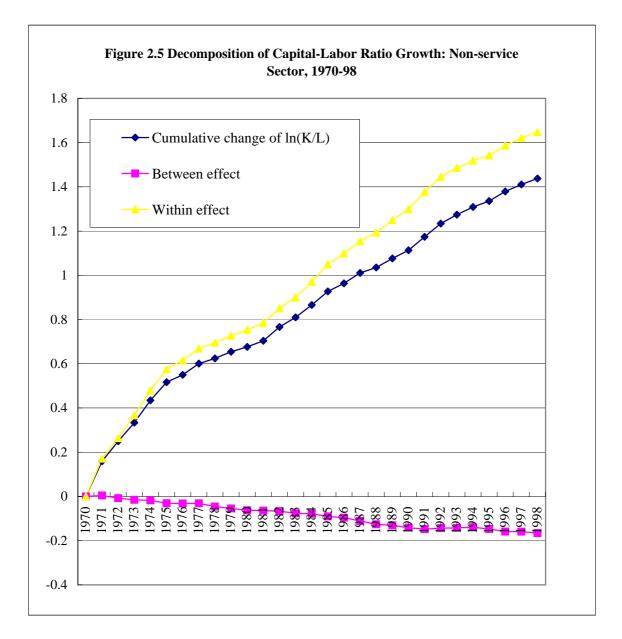
-523,085

Notes: Data in parentheses denote the ratio of factor contents to total input in Japan's manufacturing sector in 1990. The data on total input are taken from the Ministry of International Trade and Industry, *Census of Manufacturing 1990*.

Source: Authors' calculation based on Population Survey Data.

Table 2.5, Panel A Decomposition of the growth of the share of non-production workers: Manufacturing sector

	1980-90	1990-2000	1980-2000	(annual rate, %)
Growth rate of the share	1.00	0.08	0.55	
Between effect	0.12	0.16	0.14	
Within effect	0.88	-0.07	0.41	
Bet+With	1.00	0.08	0.55	


Table 2.5, Panel B Decomposition of the growth of the share of skilled workers: Manufacturing sector

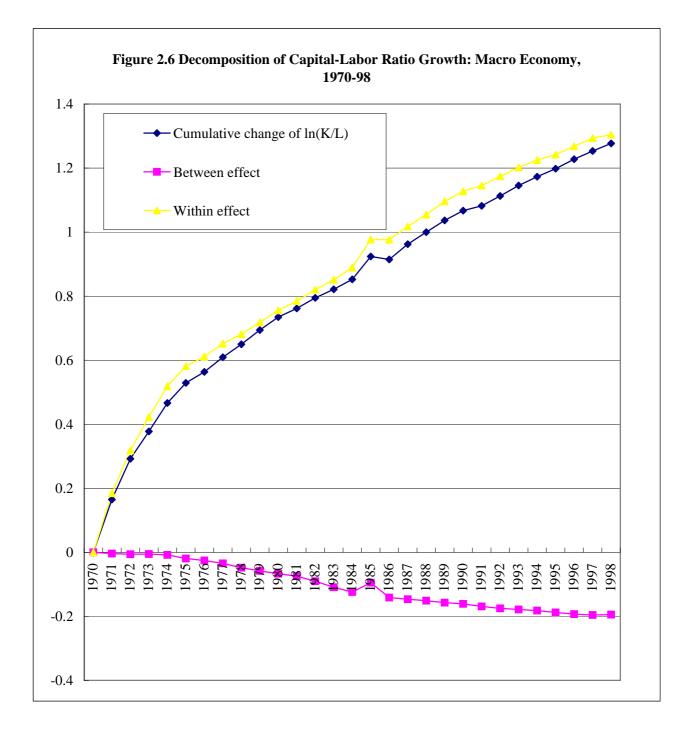

	1980-90	1990-2000	1980-2000	(annual rate, %)
Growth rate of the share	0.65	0.97	0.84	
Between effect	0.29	0.25	0.27	
Within effect	0.36	0.71	0.57	
Bet+With	0.65	0.97	0.84	

Table 2.5, Panel C Decomposition of the growth of the share of skilled workers: The whole economy

	1980-90	1990-2000	1980-2000	(annual rate, %)
Growth rate of the share	2.88	1.03	2.10	
Between effect	1.02	1.06	1.02	
Within effect	1.86	-0.02	1.08	
Bet+With	2.88	1.03	2.10	

Source: Authors' calculation based on Population Survey data.

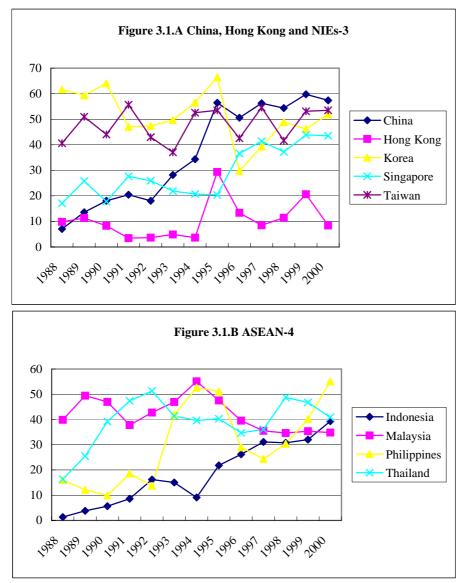


Figure 3.1 Share of Vertical Intra-Industry Trade in Japan's Trade with nine East Asian Economies: Electrical Machinery Industry

Source: Authors' calculation based on Japan's trade statistics taken from http://www.customs.go.jp/tokei/download/index_d012_e.htm

						(Mil. Yen)
	198	88	19	94	19	98
	Value	Share	Value	Share	Value	Share
Total	8,058,566	(100.00%)	13,840,134	(100.00%)	19,144,498	(100.00%)
China	55,533	(0.69%)	289,766	(2.09%)	955,363	(4.99%)
NIE3	1,504,339	(18.67%)	1,875,137	(13.55%)	2,418,761	(12.63%)
ASEAN5	1,001,102	(12.42%)	3,614,067	(26.11%)	4,604,113	(24.05%)
EU	1,664,455	(20.65%)	3,313,790	(23.94%)	4,180,557	(21.84%)
NAFTA	3,485,630	(43.25%)	4,360,695	(31.51%)	6,445,859	(33.67%)
Others	1,907,379	(23.67%)	2,551,581	(18.44%)	3,913,970	(20.44%)

 Table 3.2 Sales by Japanese-Affiliated Firms in the Electrical Machinery Industry

All figures are in nominal terms. Source: Compiled from the data underlying Fukao and Yuan (2001).

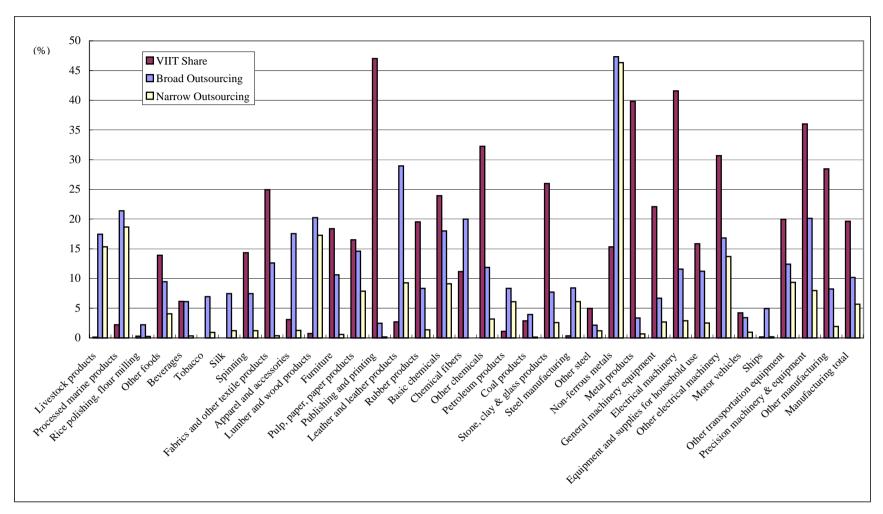
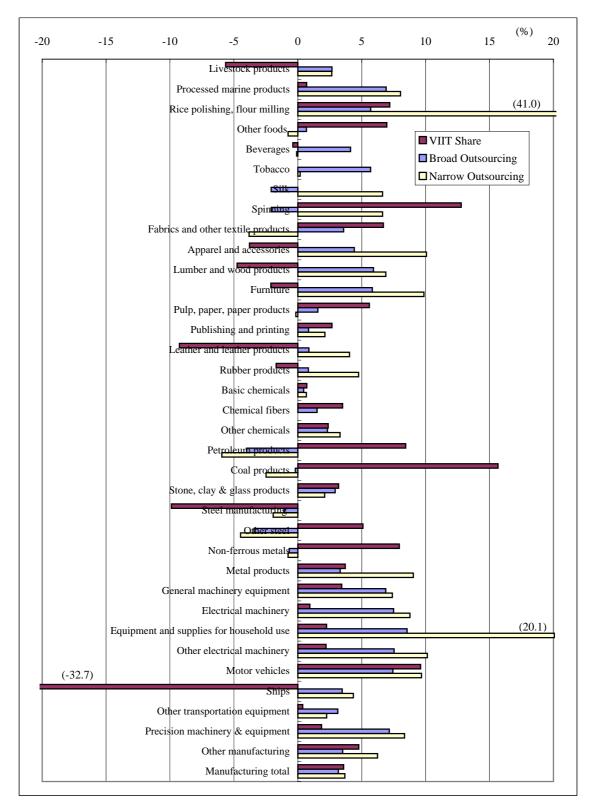
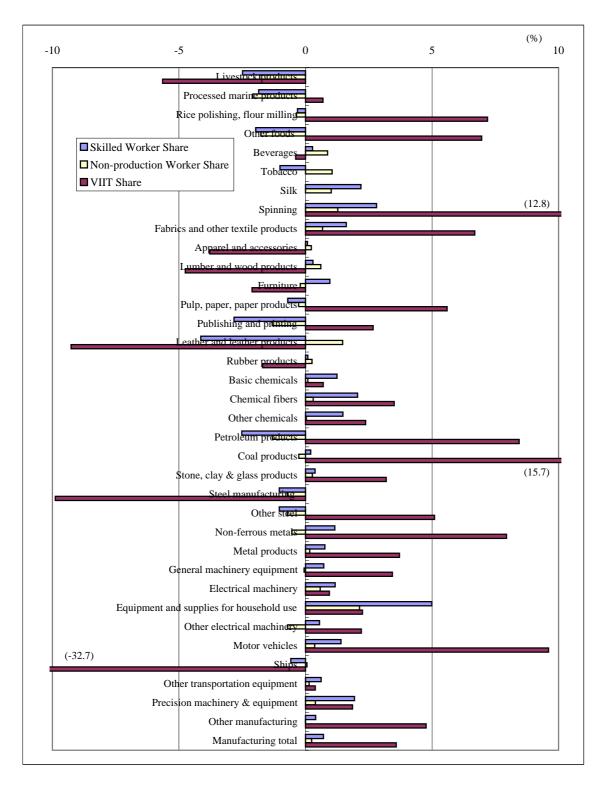



Figure 4.1 Vertical Intra-Industry Trade Share and Outsourcing Share by Industry: 2000


Source: Authors' calculation.

Growth rate of VIIT share: ln (VIIT/Total trade)

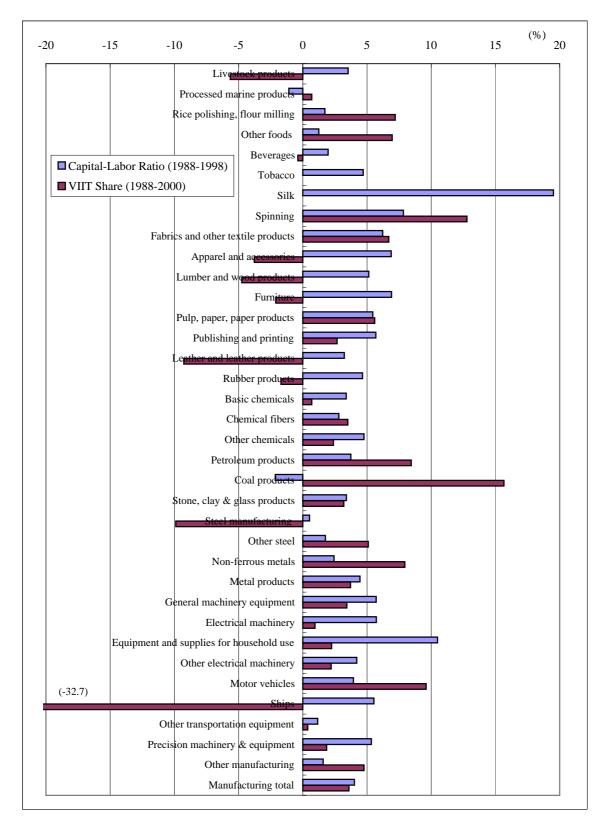

Growth rate of broad outsourcing share:In (Broad outsourcing/Total intermediate inputs)Growth rate of narrow outsourcing share:In (Narrow outsourcing/Total intermediate inputs)

Figure 4.2 Annual Growth Rate of Vertical Intra-Industry Trade Share and Outsourcing Share by Industry: 1988-2000

Growth rate of skilled worker share: ln (No. of skilled workers/Total No. of workers) Growth rate of non-production worker share: ln (No. of non-production workers/Total No. of workers)

Figure 4.3 Annual Growth Rate of Skilled Worker Share, Non-Production Worker Share, and VIIT Share by Industry: 1988-2000

Growth rate of capital-labor ratio: ln (Real capital stock/Quality-adjusted labor input) Growth rate of VIIT share: ln (VIIT/Total trade)

Figure 4.4 Annual Growth Rate of Capital-Labor Ratio and Vertical Intra-Industry Trade Share by Industry

Table 4.1 GLS Estimation Results: Skilled workers' share (1988-2000)

Skilled workers' share in total number of workers (SKILLED)					
	SKILLED	SKILLED	SKILLED	SKILLED	SKILLED
	(1)	(2)	(3)	(4)	(5)
ln (IThard/VA)	1.4808 ***	1.3879 ***	1.7396 ***	1.4988 ***	1.3981 ***
	(7.18)	(6.93)	(8.88)	(7.30)	(7.07)
ln (ITsoft/VA)	0.0418	0.0383	0.0278	0.0364	0.0348
	(0.49)	(0.49)	(0.32)	(0.43)	(0.45)
ln (NonIT/VA)	-0.6653 **	-0.5264 *	-1.0199 ***	-0.7162 **	-0.5542 **
	(-2.43)	(-1.92)	(-3.79)	(-2.58)	(-2.02)
ln (K+IT/VA)					
ln VA	1.0933 ***	1.1011 ***	1.0471 ***	1.0596 ***	1.0844 ***
	(7.70)	(7.21)	(7.01)	(7.20)	(6.92)
RDexp/VA	2.9640 **	2.3412 *	3.7139 ***	3.0787 **	2.4287 *
	(2.13)	(1.81)	(2.64)	(2.18)	(1.85)
VIITworld/Shipment	0.1362 ***			0.1521 ***	
	(3.36)			(3.68)	
VIITasia9/Shipment		0.2003 ***			0.2241 ***
		(2.77)			(3.10)
VIITnon-asia/Shipment		0.0009 *			0.0009 *
		(1.75)			(1.78)
outsourcing (narrow)			0.0072	0.0061	0.0033
			(0.86)	(0.73)	(0.44)
outsourcing (difference)			-0.0108	-0.0320	-0.0189
			(-0.39)	(-1.14)	(-0.72)
_cons	-2.2433	-2.7074	-0.7059	-1.6644	-2.4111
	(-0.94)	(-1.09)	(-0.28)	(-0.67)	(-0.94)
N	439	439	439	439	439
Wald	311.45 ***	260.74 ***	300.92 ***	325.60 ***	271.41 ***

Dependent variable:

Note: 1) Presence of AR(1) autocorrelation within panels and heteroskedasticity across panels is assumed.

2) The numbers in parentheses are z-statistics.

3) All equations include year dummies which are suppressed here.

*significant at 10% level, ** significant at 5% level, ***significant at 1% level (two-tailed test). Source: Authors' calculations.

Table 4.2 GLS Estimation	Results: Non-production	workers' share (1988-2000)

	NONPROD	NONPROD	NONPROD	NONPROD	NONPROD
	(1)	(2)	(3)	(4)	(5)
n (IThard/VA)	2.0679 ***	2.0015 ***	2.1390 ***	1.7536 ***	2.0452 ***
	(6.36)	(6.20)	(6.63)	(5.49)	(6.32)
n (ITsoft/VA)	-0.0283	-0.0395	-0.0443	-0.0509	-0.0401
	(-0.23)	(-0.33)	(-0.35)	(-0.46)	(-0.33)
n (NonIT/VA)	-0.9367 **	-0.8339 *	-1.0688 **	-0.5864	-0.9365 **
	(-2.03)	(-1.81)	(-2.30)	(-1.26)	(-2.02)
n (K+IT/VA)					
n VA	1.5570 ***	1.5463 ***	1.5052 ***	1.4477 ***	1.4978 ***
	(6.54)	(6.30)	(6.18)	(5.17)	(6.04)
RDexp/VA	5.8970 **	5.2645 *	6.0220 **	3.8564 *	5.5175 **
-	(2.47)	(2.29)	(2.54)	(1.79)	(2.38)
/IITworld/Shipment	0.0453			0.0351	
-	(0.93)			(0.84)	
VIITasia9/Shipment		0.0045			0.0370
-		(0.03)			(0.24)
/IITnon-asia/Shipment		0.0005			0.0005
*		(0.90)			(0.92)
outsourcing (narrow)			0.0107	0.0075	0.0099
			(0.89)	(0.68)	(0.83)
outsourcing (difference)			-0.0780	-0.0315	-0.0718
			(-1.57)	(-0.70)	(-1.45)
cons	13.8836 ***	13.8188 ***	15.0356 ***	14.4863 ***	14.8355 ***
	(3.50)	(3.41)	(3.69)	(3.22)	(3.61)
V	439	439	439	439	439
Wald	225.80 ***	215.84 ***	225.05 ***	187.69 ***	221.39 ***

Dependent	variable:

Note: 1) Presence of AR(1) autocorrelation within panels and heteroskedasticity across panels is assumed.

2) The numbers in parentheses are z-statistics.

3) All equations include year dummies which are suppressed here.

*significant at 10% level, ** significant at 5% level, ***significant at 1% level (two-tailed test). Source: Authors' calculations.

Table 4.3 GLS Estimation Results: Capital-Labor Ratio (1988-1998)

Capital-labor ratio (labor quality adjusted), (KLq)									
	KLq	KLq	KLq						
	(1)	(2)	(3)						
ln (wage/rental price)	0.0234	0.0188	0.024715						
	(0.09)	(0.08)	(0.09)						
VIITworld/Shipment	0.0443								
	(1.26)								
VIITasia9/Shipment		-0.0159	-0.0051						
		(-0.21)	(-0.06)						
VIITnon-asia/Shipment		0.0006	0.0007						
		(1.51)	(1.54)						
outsourcing (narrow)			0.0022						
-			(0.37)						
outsourcing (difference)			-0.0007						
			(-0.04)						
_cons	(dropped)	1.0567 ***	(dropped)						
		(7.16)							
		. ,							
N	385	385	385						
Wald	58.84 ***	15.14	46.40 ***						

Dependent variable:

Note: 1) Presence of AR(1) autocorrelation within panels and heteroskedasticity across panels is assumed. 2) The numbers in parentheses are z-statistics.

3) All equations include year dummies which are suppressed here.

*significant at 10% level, ** significant at 5% level, ***significant at 1% level (two-tailed test). Source: Authors' calculations.

		All Manufacturing Industries											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
ln (K/VA)	-0.0071 ***	-0.0072 ***	-0.0072 ***	-0.0071 ***	-0.0072 ***	-0.0071 ***	-0.0072 ***	-0.0072 ***	-0.0072 ***				
	(-2.82)	(-2.82)	(-2.83)	(-2.82)	(-2.83)	(-2.82)	(-2.84)	(-2.85)	(-2.84)				
ln VA	-0.0069 **	-0.0069 **	-0.0067 **	-0.0067 **	-0.0067 **	-0.0069 **	-0.0068 **	-0.0068 **	-0.0071 **				
	(-2.22)	(-2.19)	(-2.14)	(-2.14)	(-2.14)	(-2.21)	(-2.19)	(-2.19)	(-2.26)				
RDexp/VA	0.0087	0.0087	0.0087	0.0087	0.0087	0.0087	0.0085	0.0085	0.0085				
	(1.28)	(1.28)	(1.28)	(1.28)	(1.29)	(1.28)	(1.26)	(1.26)	(1.25)				
Imports/Total Purchases	0.0166 *					0.0157 *			0.0150				
	(1.77)					(1.68)			(1.60)				
Imports from Asia/Total Purchase		0.0097											
		(0.73)											
Imports from North America &		0.0153											
EU/Total Purchase		(0.84)											
Overseas Production Workers/Total			0.0336			0.0325							
No. of Workers [†]			(0.81)			(0.78)							
Production Workers in Asia/Total				0.0128									
No. of Workers [†]				(0.27)									
Production Workers in Non-Asian				0.0857									
Countries/Total No. of Workers [†]				(1.17)									
Overseas Production Workers/Total							0.3595 ***		0.3593 ***				
No. of Production Workers ^{††}							(12.86)		(12.85)				
Production Workers in Asia/Total								0.3701 ***					
No. of Production Workers ^{††}								(10.92)					
Production Workers in Non-Asia								0.3405 ***					
/Total No. of Production Workers ^{††}								(7.67)					
Overseas Subcontracting Cost/Total					0.0592	0.0517			0.0533				
Sales					(1.16)	(1.01)			(1.04)				
_cons	0.4918 ***	0.4904 ***	0.4868 ***	0.4866 ***	0.4870 ***	0.4912 ***	0.4848 ***	0.4848 ***	0.4890 ***				
	(7.35)	(7.33)	(7.28)	(7.28)	(7.28)	(7.34)	(7.26)	(7.27)	(7.32)				
N	54,453	54,453	54,453	54,453	54,453	54,453	54,453	54,453	54,453				
R-sq.	0.0106	0.0106	0.0106	0.0106	0.0106	0.0107	0.0144	0.0144	0.0145				

Table 4.4 Firm-Level Regression Results (All manufacturing industries, Fixed-effect model, Estimation period: 1994-1998)

Dependent variable: Non-production workers' share in total number of workers

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level (two-tailed test)

† Total number of workers refers to the sum of the number of workers in Japan and the number of workers in the firm's overseas manufacturing affiliates.

†† Total number of production workers refers to the sum of the number of workers in the manufacturing section in Japan and the number of workers in the firm's overseas manufacturing affiliates.

The numbers in Parentheses are t-statistics.

All equations include year dummies and 2 digit-level industry dummies which are suppressed here.

Source: The METI database.

Appendix Table A: Details of Japan's Trade of Electrical Machinery with China: Most Important 10 Commodities, 2000

- FF	Cable A: Details of Japan's Trade of Electrical Machinery with China: Most Implacement			EX+IM		Exports	to CHINA			Imports fr	om CHINA				price	
	Commodity Classification Name	HS for EX	HS for IM	TOTAL VALUE (1,000 yen)	unit name	quantity	value (1,000 yen)	unit value	unit name	quantity	value (1000 yen)	unit value	uvEX /uvIM	trade overlap	simi- larity	trade type
1	Tuners for television receivers FM tuners for radio-broadcast receivers Parts suitable for use solely or principally with the apparatus of headings Nos.85.25 to 85.28, other than those of subdivisions Nos.8529.10-100 to 8529.90-200	852990100 852990200 852990300 852990900	852990000	118,342,672	KG	4,846,555	65,179,123	13.45	KG	5,064,898	53,163,549	10.50	1.28	yes	no	VIIT
2	Silicon rectifiers Rectifiers, other than silicon rectifiers Static converters, other than rectifiers	850440110 850440190 850440900	850440011 850440019 850440090	76,829,971	KG	1,785,459	9,688,881	5.43		24,710,383	67,141,090	2.72	2.00	yes	no	VIIT
3	Printed circuits	853400000	853400000	59,700,115	KG	2,401,327	40,333,249	16.80	KG	1,336,073	19,366,866	14.50	1.16	yes	yes	HIIT
4	Parts and accessories of machines of subheadings Nos.8519.10 to 8519.39, other than pick-up cartridges Parts and accessories of machines of subheadings Nos.8519.40 to 8521.90, other than pick-up cartridges	852290100 852290900	852290000	59,083,094	KG	4,147,673	32,268,583	7.78	KG	4,176,498	26,814,511	6.42	1.21	yes	yes	нит
5	Apparatus for switching electrical circuits, for a voltage not exceeding 1,000 volts, other than those of subheadings Nos.8536.10 to 8536.69 Connector for a voltage not exceeding 1,000 volts Apparatus formaking connections electrical circuits, for a voltag	853690100 853690200 853690210 853690290	853690000	53,476,413	KG	4,675,039	28,819,014	6.16	KG	5,033,696	24,657,399	4.90	1.26	yes	no	VIIT
6	Reception apparatus for television of color incorporating cathode-ray television picture tubes, for broadcasting Reception apparatus for television of color for broadcasting, not incorporating cathode-ray television picture tubes Reception apparatus for t	852812110 852812111 852812119 852812190 852812900	852812000 852812010 852812090	48,983,835	NO	133,784	2,619,041	19.58	NO	2,453,767	46,364,794	18.90	1.04	no	yes	OWT
7	Cased micro-computers of MOS type, monolithic digital	854213900	854213090	48,429,771	NO	340,000,000	37,973,922	0.11	NO	134,900,000	10,455,849	0.08	1.44	yes	no	VIIT
8	Motors of an output not exceeding 37.5 W: DC motors: Electric motors, of an output not exceeding 10 W	850110110 850110191	850110011	44,101,093	KG	571,696	4,907,953	8.58	KG	10,602,695	39,193,140	3.70	2.32	yes	no	VIIT
9	Chassis and kits of radio-broadcast receivers, combined with sound recording or reproducing apparatuses, other than those of subheadings Nos.8527.11 to 8527.29 Radio-broadcast receivers, incorporating digital audio disk players, combined with sound recording	852731100 852731910 852731990	852731000	42,755,915	NO	5,542	49,018	8.84	KG	22760253	42706897	1.88	4.71	no	error	OWT
10	Parts of apparatus for switching electrical circuits Parts of apparatus for making connections electrical circuits Parts suitable for use solely or principally with the apparatus of heading No. 85.35, 85.36 or 85.37, other than those of subdivisions Nos.8	853890100 853890200 853890900	853890000	41,859,800	KG	6,680,248	37,705,557	5.64	KG	1,615,926	4,154,243	2.57	2.20	yes	no	VIIT
Subtotal a	Sub-total of top 10 commodities			593,562,680			259,544,342				334,018,338					
Subtotal b	Other commodities (from the 11th commodity to the 309th Commodity)			1,222,779,585			659,984,336				562,795,249					
			1						-							

Note: All the export value and the unit value data are multiplied by 1.123488827 for fob-cif adjustment. Sources: Japan's trade data are taken from http://www.customs.go.jp/tokei/download/index_d012_e.htm. Commodity classification names are based on Japan Tariff Classification 'Zeirom 2001 for Windows.'

Appendix Table B1. Occupational Classification in the Population Survey

Major Groups

- 1 Professional and Technical Occupations
- 2 Managers and Administrators
- 3 Clerical and Secretarial Occupations
- 4 Sales Occupations
- **5** Services Occupations
- 6 Protective Service Occupations
- 7 Occupations in Agriculture, Forestry and Fishing
- 8 Occupations in Transportation and Telecommunication
- 9 Plant and Machine Occupations, Craft and Related Occupations, and Occupations in Mining and Construction
- 10 Other Occupations

Skilled workers: Groups 1 and 2 Production workers: Group 9 Appendix Table B2. Correspondence Table: Fukao-Ito Classification in correspondence to 1980-85-90 Japan Linked Input-Output Standard Classification (manufacturing)

-	o-Ito Classification	Linked I-O	Fukao-Ito Classification	Linked I-O
	Beef meat (bone meat), Pork (born mea	1111-010	112 Woven fabric apparel, Knitted apparel	1521-011
	By-products of slaughtering and meat p	1111-015	113 Other wearing apparel and clothing acc	1522-011
	Proceessed meat products	1112-011	114 Carpets and floor mats, Bedding, Other	1529-090
	Bottled or canned meat products	1112-021	115 Timber	1611-011
	Animal oils and fats	1112-031	116 Plywood	1611-021
	Drinking milk	1112-041	117 Wooden chips	1611-031
	Dairy products	1112-042	118 Wooden products for construction	1619-091
	Frozen fish and shellfish	1113-011	119 Other wooden products, n.e.c.	1619-099
	Salted, dried or smoked seafood	1113-021	120 Wooden furniture and fixtures, Wooder	1711-010
	Bottled or canned seafood	1113-031	121 Metalic furniture and fixtures	1711-031
	Fish paste Fish oil and meal	1113-041 1113-051	122 Pulp, Waste paper123 Foreign paper and Japanese paper	1811-011 1812-011
	Other processed seafoods	1113-099	123 Poreign paper and Japanese paper 124 Paperboard	1812-011
	Milled rice	1113-099	125 Corrugated cardboard	1813-011
	Other grain milling	1114-011	126 Coated paper and building (construction	1813-021
	Wheat flour	1114-021	127 Corrugated card board boxes, Other pa	1821-010
	Other grain milled products	1114-029	128 Other pulp, paper and procesed paper p	1829-090
	Noodles	1115-011	129 Newspapers	1911-011
	Bread	1115-021	130 Printing, plate making and book buindi	1911-021
	Confectionery	1115-022	131 Publising	1911-031
	Bottled or canned vegetables and fruits	1116-011	132 Ammonia	2011-011
	Preserved agricultural foodstuffs (other	1116-021	133 Chemical fertilizer	2011-021
	Refined sugar	1117-011		2011-029
80	Other sugar and by-products of sugar	1117-019	134 Soda ash	2021-011
81	Starch	1117-021	135 Caustic soda	2021-012
82	Dextrose, syrup and isomerized sugar	1117-031	136 Liquid chlorine	2021-013
83	Vegetable oils, Cooking oil	1117-040	137 Other industrial soda chemicals	2021-019
84	Vegetable meal	1117-043	138 Titanium oxide	2029-021
85	Crude salt	1117-051	139 Carbon black	2029-022
	Salt	1117-052	140 Other inorganic pigments	2029-029
	Condiments and seasonings	1117-061	141 Compressed gas and liquified gas	2029-031
	Prepared frozen foods	1119-011	142 Other industrial inorganic chemicals	2029-099
	Retort foods	1119-021	140 54 1	2029-011
	Dishes, sushi,lunchboxes, School lunch	1119-090	143 Ethylene	2031-011
	Refined sake	1121-011	144 Propylene	2031-012
	Beer Ethyl clock of for lignor monufacturing	1121-021	145 Other petrochemical basic products 146 Pure benzene	2031-019
	Ethyl alcohol for liquor manufacturing	1121-031	146 Pure benzene 147 Pure toluene	2031-021
	Whiskey and brandy Other liquors	1121-041 1121-099		2031-022 2031-023
	Tea and roasted coffee	1121-099	148 Xylene 149 Other petrochemical aromatic products	2031-023
	Soft drinks	1129-011	149 Other performent aromatic products 150 Acetic acid	2031-029
	Manufactured ice	1129-021	151 Acetic acid vinyl monomer	2032-011
	Feeds	1131-011	152 Styrene monomer	2032-012
	Organic fertilizers, n.e.c.	1131-021	153 Synthetic rubber	2032-013
	Tobacco	1141-011	154 Synthetic alcohol, Ethylene dichloride,	2032-019
	Raw silk	1511-011	155 Methane derivatives	2039-021
	Fiber yarns	1511-021	156 Oil and fat industrial chemicals	2039-031
	-	1511-031	157 Plasticizers	2039-041
		1511-041	158 Synthetic dyes	2039-051
		1511-099	159 Other industrial organic chemicals	2039-099
104	Cotton and staple fiber fabrics (inc. fab.	1512-011	-	2039-011
	Silk and artificial silk fabrics (inc. fabri	1512-021	160 Thermo-setting resins	2041-011
106	Woolen fabrics, hemp fabrics, and othe	1512-031	161 Thermoplastic resine, Polyethylene (lov	2041-091
		1512-091	162 High functionality resins	2041-092
		1512-099	163 Other resins	2041-099
	Knitting fabrics	1513-011	164 Rayon, acetate	2051-011
	Yarn and fabric dyeing and finishing (p	1514-011	165 Synthetic fibers	2051-021
	Rope and nets	1519-011	166 Medicaments	2061-011
	Fabricated textiles for medical use	1519-031	167 Soap and synthetic detergents, Surface	2071-010
111	Other fabricated textile products	1519-099	168 Cosmetics, toilet preparations and denti	2071-021

	tinued) Paints and varnishes	2072-011	228 Electric wires and cables, Optical fiber	2721-010
			228 Electric wires and cables, Optical fiber	
	Printing ink Photographic sensitive materials	2072-021 2073-011	229 Rolled and drawn copper and copper al	2721-012 2722-011
	Agricultural chemicals	2073-011 2074-011	230 Rolled and drawn aluminum	2722-011
	Gelatin and adhesives, Other final chen	2074-011 2079-011	231 Non-ferrous metal castings and forging	2722-021
175	Geratin and adhesives, Other finar chen	2079-011	231 Non-terrous metal castings and forging. 232 Nuclear fuels	2722-031
174	Gasoline	2111-011	233 Other non-ferrous metal products	2722-099
	Jet fuel oils	2111-012	234 Metal Products for Construction	2811-011
	Kerosene	2111-013	235 Metal Products for Architecture	2812-011
	Light oils	2111-014	236 Other metal Products, n.e.c.	2899-090
	Heavy oil A	2111-015	237 Boilers, Turbines, Engines	3011-010
	Heavy oils B and C	2111-016	238 Conveyors	3012-011
	Naphtha	2111-017	239 Refrigerators and Air Conditioning App	3013-011
181	LPG (Liquified Petroeum gas)	2111-018	240 Pumps and Compressors	3019-011
182	Other petroeum refinery products	2111-019	241 Other General industrial meachinery an	3019-090
183	Coke	2121-011	242 Mining, Civil engineering and Construc	3021-011
	Other coal products	2121-019	243 Chemical machinery	3022-011
	Paving materials	2121-021	244 Metal Machine Tools	3024-011
	Plastic films and sheets, Plastic plates, 1	2211-010	245 Metal Processing Machinery	3024-021
	Tires and inner tuves	2311-011	246 Agricultural machinery	3029-011
	Other rubber products	2311-019	247 Textile Machinery	3029-021
	Rubber footwear	2319-011	248 Food Processing Machinery	3029-031
- / 0	Plastic footwear	2319-021	249 Sawmill, Wood Working, Veneer and F	3029-091
- / -	Leather footwear	2411-011	250 Pulp, Equipment and Paper Machinery	3029-092
	Leather and fur skins	2412-011	251 Printing, Bookbinding and paperproces	3029-093
	Miscellaneous leather products	2412-021	252 Casting Equipment	3029-094
	Sheet glass, Safety glass and multilayer Glass processing materials, Other glass	2511-010 2519-090	253 Plastic Processing Machinery254 Semiconductor Making Equipment, Oth	3029-095 3029-099
	Cement	2519-090	255 Machinists' precision tools, Metal mold	3029-099
	Ready mixed concrete	2522-011	255 Machinists precision tools, Metal mold	3019-021
	Cement products	2522-011	256 Copy Machine, Electronic Calculator, V	3111-010
	Pottery, china and earthenware for cons	2523-011	250 Copy Machine, Electronic Calculator, 7 257 Vending Machines	3112-010
	Pottery, china and earthenware for indu	2531-012	258 Amusement Machinery	3112-012
	Pottery, china and earthenware for hom	2531-013	259 Other Machinery for Service Industory	3112-019
	Clay refactories	2599-011	260 Electric Audio Equipment, Magnetic Ta	3211-010
	Other structural clay products	2599-021	261 Radio and Television sets	3211-021
204	Carbon and graphite products	2599-031	262 Household Electric Appliance	3211-099
	Abrasive	2599-041	263 Electric Computing Equipment (Main F	3311-010
206	Miscellaneous ceramic, stone and clay 1	2599-091	264 Wired Communication Equipment, Rad	3321-010
		2599-099	265 Video Recording and Playback Equipm	3331-010
	Pig iron	2611-011	266 Electric Measuring Instrumetns	3332-011
	Ferroalloys	2611-021	267 Semiconductor Devices, Intergrated Cir	3341-010
	Crude steel (converters), Crude steel (el	2611-030	268 Electron Tubes	3359-011
	Scrap iron	2612-011	269 Generators	3411-011
	Steel, Steel strip (ordinary steel), Steel 1	2621-010	270 Electric Motors	3411-012
	Hot rolled steel (special steel)	2621-016	271 Relay Switches and Switchbords, Trans	3411-020
	Steel pipies and tubes (ordinary steel)	2622-011	272 Electric Lighting Fixtures and Apparatu	3421-011
	Steel pipes and tubes (special steel)	2622-012	273 Electric Bulbs 274 Pattorias Wiring Daviass and Supplies	3421-031
	Cold-finished steel	2623-011	274 Batteries, Wiring Devices and Supplies	3421-090
	Coasted steel	2623-012 2631-011	275 Passenger Motor Cars 276 Trucks, Buses and Other Cars, Motor V	3511-011 3511-019
	Forged steel Cast steel	2631-011	276 Trucks, Buses and Other Cars, Motor V 277 Two-wheel Motor Vehicles	3531-019
	Case iron pipes and tubes	2631-012	277 Two-wheel Motor Venicles 278 Internal Combustion Engines for Motor	3541-021
	Case materials (iron)	2631-021	278 Internal Combustion Engines for Motor 279 Steel Ships	3611-021
	Forged materials (iron)	2631-031	280 Ships Except Steel Ships	3611-011
	Iron and steel shearing and slitting, othe	2649-090	281 Internal Combusion Engines for Vessel	3611-021
	Copper	2049-090	281 Internal Combusion Engines for Vesser 282 Repair of Ships	3611-031
	Lead and Zinc (inc.regenerated lead)	2711-021	283 Rolling Stock	3621-011
	(egenerated read)	2711-031	284 Repair of Rolling Stock	3621-101
225	Aluminum (inc.regenerated lead)	2711-041	285 Aircrafts	3622-011
	Other non-ferrous metals	2711-099	286 Repair of Aircrafts	3622-101
	Non-ferrous metal scrap	2712-011	287 Bicycles	3629-011

(continued)	
288 Transport Equipment for Industrial Use	3629-091
289 Other Transport Equipment, n.e.c.	3629-099
290 Camera	3711-011
291 Other Photograhic and Optical Instrume	3711-099
292 Watches and Clocks	3712-011
293 Professional and Scientific Instruments	3719-011
294 Analytical Instruments, Testing Machin	3719-021
295 Medial Instruments	3719-031
296 Toys, Sporting and Athletic Goods	3911-010
297 Musical Instruments, Audio and Video	3919-010
298 Writing Instruments and Stationery	3919-031
299 Small Personal Adorments	3919-041
300 "Tatami" (Straw Matting) and Straw Pr	3919-051
301 Ordnance	3919-061
302 Miscellaneous Manufacturing Products	3919-099

Appendix Table B3	. Correspondence Table
--------------------------	------------------------

--- JIP Classification in correspondence to Fukao-Ito Classification (manufacturing)---

IP Industry	Fukao-	Ito Cla	assifica	ation						
11 Livestock products	57	58	59	60	61	62	63			
12 Processed marine products	64	65	66	67	68	69				
13 Rice polishing, flour milling	70	71	72	73						
14 Other foods	74	75	76	77	78	79	80	81	82	83
	84	85	86	87	88	89	90	99	100	
15 Beverages	91	92	93	94	95	96	97	98		
16 Tobacco	101									
17 Silk	102									
18 Spinning	103									
19 Fabrics and other textile products	104	105	106	107	108	109	110	111		
20 Apparel and accessories	112	113	114							
21 Lumber and wood products	115	116	117	118	119					
22 Furniture	120	121								
23 Pulp, paper, paper products	122	123	124	125	126	127	128			
24 Publishing and printing	129	130	131							
25 Leather and leather products	191	192	193							
26 Rubber products	187	188	189	190						
27 Basic chemicals	132	133	134	135	136	137	138	139	140	14
	142	143	144	145	146	147	148	149	150	15
	152	153	154	155	156	157	158	159	160	16
	162	163								
28 Chemical fibers	164	165								
29 Other chemicals	166	167	168	169	170	171	172	173		
30 Petroleum products	174	175	176	177	178	179	180	181	182	
31 Coal products	183	184	185							
32 Stone, clay & glass products	194	195	196	197	198	199	200	201	202	20
	204	205	206							
33 Steel manufacturing	207	208	209	210						
34 Other steel	211	212	213	214	215	216	217	218	219	220
	221	222								
35 Non-ferrous metals	223	224	225	226	227	228	229	230	231	232
	233									
36 Metal products	234	235	236							
37 General machinery equipment	237	238	239	240	241	242	243	244	245	240
	247	248	249	250	251	252	253	254	255	25
	257	258	259	278	281					
38 Electrical machinery	269	270	271							
39 Equipment and supplies for household use	260	261	262							
40 Other electrical machinery	263	264	265	266	267	268	272	273	274	
41 Motor vehicles	275	276								
42 Ships	279	280	282							
43 Other transportation equipment	277	283	284	285	286	287	288	289		
44 Precision machinery & equipment	290	291	292	293	294	295				
45 Other manufacturing	186	296	297	298	299	300	301	302		