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Abstract

Conventional tests of the predictability of stock returns could be invalid, that is reject the null too

frequently, when the predictor variable is persistent and its innovations are highly correlated with

returns. We develop a pretest to determine whether the conventional t-test leads to invalid inference

and an efficient test of predictability that corrects this problem. Although the conventional t-test is

invalid for the dividend–price and smoothed earnings–price ratios, our test finds evidence for

predictability. We also find evidence for predictability with the short rate and the long-short yield

spread, for which the conventional t-test leads to valid inference.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous studies in the last two decades have asked whether stock returns can be
predicted by financial variables such as the dividend–price ratio, the earnings–price ratio,
- see front matter r 2005 Elsevier B.V. All rights reserved.
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Drawing on the work of Stambaugh (1999), Lewellen (2004) motivates the statistic by
interpreting the term bueðbr� rÞ as the ‘‘finite-sample bias’’ of the OLS estimator.
Assuming that rp1, Lewellen tests the predictability of returns using the statistic Qðb0; 1Þ.

3. Inference with a persistent regressor

Fig. 1 is a time-series plot of the log dividend–price ratio for the NYSE/AMEX value-
weighted index and the log smoothed earnings–price ratio for the S&P 500 index at
quarterly frequency. Following Campbell and Shiller (1988), earnings are smoothed by
taking a backwards moving average over ten years. Both valuation ratios are persistent
and even appear to be nonstationary, especially toward the end of the sample period. The
95% confidence intervals for r are ½0:957; 1:007� and ½0:939; 1:000� for the dividend–price
ratio and the earnings–price ratio, respectively (see Panel A of Table 4).

The persistence of financial variables typically used to predict returns has important
implications for inference about predictability. Even if the predictor variable is I(0), first-
order asymptotics can be a poor approximation in finite samples when r is close to one
because of the discontinuity in the asymptotic distribution at r ¼ 1 (note that s2x ¼
s2e=ð1� r2Þ diverges to infinity at r ¼ 1). Inference based on first-order asymptotics could
therefore be invalid due to size distortions. The solution is to base inference on more
accurate approximations to the actual (unknown) sampling distribution of test statistics.
There are two main approaches that have been used in the literature.

The first approach is the exact finite-sample theory under the assumption of normality
(i.e., Assumption 1). This is the approach taken by Evans and Savin (1981, 1984) for
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Fig. 1. Time-series plot of the valuation ratios. This figure plots the log dividend–price ratio for the CRSP value-

weighted index and the log earnings–price ratio for the S&P 500. Earnings are smoothed by taking a 10-year

moving average. The sample period is 1926:4–2002:4.



might still be useful if the autocorrelation is a bit lower, but it would depend on the
underlying parameters (the empirical tests later illustrate this point).
The previous paragraph suggests that DY ’s sample autocorrelation determines

whether the conditional or unconditional test is better. Ideally, we could choose
between the tests in advance, before looking at the data. From an ex ante
perspective, the conditional test has greater power when r is close to one, but the
opposite is true once r drops below some level that depends on the other parameters.
(The appendix discusses power in more detail.) However, without prior information
about r; we can’t say ahead of time which test is better. Thus, it makes sense to rely
on both tests and to calculate an overall significance level that reflects the probability
of rejecting using either test.
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Fig. 1. Sampling distribution of #b and #r: The figure shows the distribution of the OLS slope estimates

from rt ¼ aþ bxt�1 þ et and xt ¼ fþ rxt�1 þ mt: Panel A shows the marginal, or unconditional,

distribution of #b and Panel B shows the joint distribution of #b and #r: The plots are based on Monte Carlo

simulations (20,000 in Panel A and 2,000 in Panel B). The true parameters are b ¼ 0; r ¼ 0:99; corðe; mÞ ¼
�0:92; se ¼ 0:04; sm ¼ 0:002; and T ¼ 300: Panel A: Marginal distribution of #b: Panel B: Joint distribution
of #b and #r:
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Table 4

Estimates of the model parameters

Series Obs. Variable p d DF-GLS 95% CI: r 95% CI: c

Panel A: S&P 1880– 2002, CRSP 1926– 2002

S&P 500 123 d–p 3 �0.845 �0.855 ½0:949; 1:033� ½�6:107; 4:020�
e–p 1 �0.962 �2.888 ½0:768; 0:965� ½�28:262;�4:232�

Annual 77 d–p 1 �0.721 �1.033 ½0:903; 1:050� ½�7:343; 3:781�
e–p 1 �0.957 �2.229 ½0:748; 1:000� ½�19:132;�0:027�

Quarterly 305 d–p 1 �0.942 �1.696 ½0:957; 1:007� ½�13:081; 2:218�
e–p 1 �0.986 �2.191 ½0:939; 1:000� ½�18:670; 0:145�

Monthly 913 d–p 2 �0.950 �1.657 ½0:986; 1:003� ½�12:683; 2:377�
e–p 1 �0.987 �1.859 ½0:984; 1:002� ½�14:797; 1:711�

Panel B: S&P 1880– 1994, CRSP 1926– 1994

S&P 500 115 d–p 3 �0.835 �2.002 ½0:854; 1:010� ½�16:391; 1:079�
e–p 1 �0.958 �3.519 ½0:663; 0:914� ½�38:471;�9:789�

Annual 69 d–p 1 �0.693 �2.081 ½0:745; 1:010� ½�17:341; 0:690�
e–p 1 �0.959 �2.859 ½0:591; 0:940� ½�27:808;�4:074�

Quarterly 273 d–p 1 �0.941 �2.635 ½0:910; 0:991� ½�24:579;�2:470�
e–p 1 �0.988 �2.827 ½0:900; 0:986� ½�27:322;�3:844�

Monthly 817 d–p 2 �0.948 �2.551 ½0:971; 0:998� ½�23:419;�1:914�
e–p 2 �0.983 �2.600 ½0:970; 0:997� ½�24:105;�2:240�

Panel C: CRSP 1952– 2002

Annual 51 d–p 1 �0.749 �0.462 ½0:917; 1:087� ½�4:131; 4:339�
e–p 1 �0.955 �1.522 ½0:773; 1:056� ½�11:354; 2:811�
r3 1 0.006 �1.762 ½0:725; 1:040� ½�13:756; 1:984�
y–r1 1 �0.243 �3.121 ½0:363; 0:878� ½�31:870;�6:100�

Quarterly 204 d–p 1 �0.977 �0.392 ½0:981; 1:022� ½�3:844; 4:381�
e–p 1 �0.980 �1.195 ½0:958; 1:017� ½�8:478; 3:539�
r3 4 �0.095 �1.572 ½0:941; 1:013� ½�11:825; 2:669�
y–r1 2 �0.100 �2.765 ½0:869; 0:983� ½�26:375;�3:347�

Monthly 612 d–p 1 �0.967 �0.275 ½0:994; 1:007� ½�3:365; 4:451�
e–p 1 �0.982 �0.978 ½0:989; 1:006� ½�6:950; 3:857�
r3 2 �0.071 �1.569 ½0:981; 1:004� ½�11:801; 2:676�
y–r1 1 �0.066 �4.368 ½0:911; 0:968� ½�54:471;�19:335�

This table reports estimates of the parameters for the predictive regression model. Returns are for the annual S&P

500 index and the annual, quarterly, and monthly CRSP value-weighted index. The predictor variables are the log

dividend–price ratio (d–p), the log earnings–price ratio (e–p), the three-month T-bill rate (r3), and the long-short

yield spread (y–r1). p is the estimated autoregressive lag length for the predictor variable, and d is the estimated

correlation between the innovations to returns and the predictor variable. The last two columns are the 95%

confidence intervals for the largest autoregressive root (r) and the corresponding local-to-unity parameter (c) for

each of the predictor variables, computed using the DF-GLS statistic.
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much smaller. For these predictor variables, the pretest rejects the null hypothesis, which
suggests that the conventional t-test leads to approximately valid inference.

4.3. Testing the predictability of returns

In this section, we construct valid confidence intervals for b through the Bonferroni
Q-test to test the predictability of returns. In reporting our confidence interval for b, we
scale it by bse=bsu. In other words, we report the confidence interval for eb ¼ ðse=suÞb instead



predictability is sufficiently strong that a relatively inefficient test can also find
predictability.

In Panel C, we report the results for the subsample since 1952. In this subsample, we
cannot reject the null hypothesis for the valuation ratios (d–p and e–p). For the T-bill rate
and the yield spread (r3 and y2r1), however, we reject the null hypothesis except at annual
frequency. For the interest rate variables, the correlation d is sufficiently small that
conventional inference based on the t-test leads to approximately valid inference. This is
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Table 5

Tests of predictability

Series Variable t-stat bb 90% CI: b Low CI b

t-test Q-test (r ¼ 1)

Panel A: S&P 1880– 2002, CRSP 1926– 2002

S&P 500 d–p 1.967 0.093 ½�0:040; 0:136� ½�0:033; 0:114� �0.017

e–p 2.762 0.131 ½�0:003; 0:189� ½0:042; 0:224� �0.023

Annual d–p 2.534 0.125 ½�0:007; 0:178� ½0:014; 0:188� 0.020

e–p 2.770 0.169 ½�0:009; 0:240� ½0:042; 0:277� 0.002

Quarterly d–p 2.060 0.034 ½�0:014; 0:052� ½�0:009; 0:044� �0.010

e–p 2.908 0.049 ½�0:001; 0:068� ½0:010; 0:066� 0.002

Monthly d–p 1.706 0.009 ½�0:006; 0:014� ½�0:005; 0:010� �0.005

e–p 2.662 0.014 ½�0:001; 0:019� ½0:002; 0:018� 0.001

Panel B: S&P 1880– 1994, CRSP 1926– 1994

S&P 500 d–p 2.233 0.141 ½�0:035; 0:217� ½�0:048; 0:183� �0.081

e–p 3.321 0.196 ½0:062; 0:272� ½0:093; 0:325� �0.030

Annual d–p 2.993 0.212 ½0:025; 0:304� ½0:056; 0:332� 0.011

e–p 3.409 0.279 ½0:048; 0:380� ½0:126; 0:448� 0.012

Quarterly d–p 2.304 0.053 ½�0:004; 0:083� ½�0:006; 0:076� �0.027

e–p 3.506 0.079 ½0:018; 0:107� ½0:027; 0:109� 0.005

Monthly d–p 1.790 0.013 ½�0:004; 0:022� ½�0:007; 0:017� �0.013

e–p 3.185 0.022 ½0:002; 0:030� ½0:005; 0:028� 0.000

Panel C: CRSP 1952– 2002

Annual d–p 2.289 0.124 ½�0:023; 0:178� ½�0:007; 0:183� 0.020

e–p 1.733 0.114 ½�0:078; 0:178� ½�0:031; 0:229� �0.025

r3 �1.143 �0.095 ½�0:229; 0:045� ½�0:231; 0:042� —

y–r1 1.124 0.136 ½�0:087; 0:324� ½�0:075; 0:359� �0.156

Quarterly d–p 2.236 0.036 ½�0:011; 0:051� ½�0:010; 0:030� 0.005

e–p 1.777 0.029 ½�0:019; 0:044� ½�0:012; 0:042� �0.003

r3 �1.766 �0.042 ½�0:084;�0:004� ½�0:084;�0:004� �0.086

y–r1 1.991 0.090 ½0:009; 0:162� ½0:006; 0:158� �0.002

Monthly d–p 2.259 0.012 ½�0:004; 0:017� ½�0:004; 0:010� 0.001

e–p 1.754 0.009 ½�0:006; 0:014� ½�0:004; 0:012� �0.001

r3 �2.431 �0.017 ½�0:030;�0:006� ½�0:030;�0:006� �0.030

y–r1 2.963 0.047 ½0:020; 0:072� ½0:020; 0:072� 0.016

This table reports statistics used to infer the predictability of returns. Returns are for the annual S&P 500 index

and the annual, quarterly, and monthly CRSP value-weighted index. The predictor variables are the log

dividend–price ratio (d–p), the log earnings–price ratio (e–p), the three-month T-bill rate (r3), and the long-short

yield spread (y–r1). The third and fourth columns report the t-statistic and the point estimate bb from an OLS

regression of returns onto the predictor variable. The next two columns report the 90% Bonferroni confidence

intervals for b using the t-test and Q-test, respectively. Confidence intervals that reject the null are in bold. The

final column reports the lower bound of the confidence interval for b based on the Q-test at r ¼ 1.
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Figure 1. Log Dividend Yield 
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Figure 2. Bonferroni Confidence Intervals for Dividend Yield.  
This figure plots the 90% confidence interval for β over the confidence interval for ρ, based on 
Q test 
 

(1) Monthly data 
Full Sample Monthly
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Sub Sample Monthly
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Figure 2 (continued)  
(2) Quarterly data 

Full Sample Quarterly
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Sub Sample Quarterly
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